Elliptic nets and elliptic curves

被引:14
|
作者
Stange, Katherine [1 ]
机构
[1] Stanford Univ, Dept Math, Stanford, CA 94305 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
elliptic net; elliptic curve; Laurentness; elliptic divisibility sequence; recurrence sequence; HILBERTS 10TH PROBLEM; DIVISIBILITY SEQUENCES; INTEGRAL POINTS; DIVISORS;
D O I
10.2140/ant.2011.5.197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An elliptic divisibility sequence is an integer recurrence sequence associated to an elliptic curve over the rationals together with a rational point on that curve. In this paper we present a higher-dimensional analogue over arbitrary base fields. Suppose E is an elliptic curve over a field K, and P-1, ..., P-n are points on E defined over K. To this information we associate an n-dimensional array of values in K satisfying a nonlinear recurrence relation. Arrays satisfying this relation are called elliptic nets. We demonstrate an explicit bijection between the set of elliptic nets and the set of elliptic curves with specified points. We also obtain Laurentness/integrality results for elliptic nets.
引用
收藏
页码:197 / 229
页数:33
相关论文
共 50 条
  • [31] INTERSECTING THE TORSION OF ELLIPTIC CURVES
    Garcia-Fritz, Natalia
    Pasten, Hector
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 110 (01) : 56 - 63
  • [32] SUMS OF BIQUADRATES AND ELLIPTIC CURVES
    Aguirre, Julian
    Carlos Peral, Juan
    GLASNIK MATEMATICKI, 2013, 48 (01) : 49 - 58
  • [33] An Algorithm for the Rank of Elliptic Curves
    赵春来
    ChineseScienceBulletin, 1993, (16) : 1329 - 1331
  • [34] Icosahedral representations and elliptic curves
    Girardi, T
    MANUSCRIPTA MATHEMATICA, 2005, 117 (03) : 239 - 263
  • [35] Moments of the Rank of Elliptic Curves
    Miller, Steven J.
    Wong, Siman
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2012, 64 (01): : 151 - 182
  • [36] Elliptic curves with no exceptional primes
    Duke, W
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 813 - 818
  • [37] ON THE ARAKELOV THEORY OF ELLIPTIC CURVES
    de Jung, Robin
    ENSEIGNEMENT MATHEMATIQUE, 2005, 51 (3-4): : 179 - 201
  • [38] ELLIPTIC CURVES OF PRIME CONDUCTOR
    SETZER, B
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1975, 10 (JUL): : 367 - 378
  • [39] On computing logarithms on elliptic curves
    Semaev, I.A.
    Discrete Mathematics and Applications, 1996, 6 (01):
  • [40] Reduction and isogenies of elliptic curves
    Melistas, Mentzelos
    ACTA ARITHMETICA, 2024, 215 (02) : 179 - 192