Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials

被引:15
|
作者
Mayteevarunyoo, Thawatchai [2 ]
Malomed, Boris A. [1 ]
Reoksabutr, Athikom [2 ]
机构
[1] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
[2] Mahanakorn Univ Technol, Dept Telecommun Engn, Bangkok 10530, Thailand
关键词
soliton; breather; Bose-Einstein condensate; photonic-crystal fiber; Gross-Pitaevskii equation; nonlinear Schrodinger equation; BOUND-STATES; SOLITONS; PROPAGATION; LATTICES; COLLAPSE; LIGHT;
D O I
10.1080/09500340.2011.601329
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the two-dimensional Gross-Pitaevskii/nonlinear-Schrodinger (GP/NLS) equation with the self-focusing nonlinearity confined to two identical circles, separated or overlapped. The model can be realised in terms of Bose-Einstein condensates (BECs) and photonic-crystal fibers. Following the recent analysis of the spontaneous symmetry breaking (SSB) of localized modes trapped in 1D and 2D double-well nonlinear potentials (also known as pseudopotentials), we aim to find 2D solitons in the two-circle setting, using numerical methods and the variational approximation (VA). Well-separated circles support stable symmetric and antisymmetric solitons. The decrease of separation L between the circles leads to destabilisation of the solitons. The symmetric modes undergo two SSB transitions. First, they are transformed into weakly asymmetric breathers, which is followed by a transition to single-peak modes trapped in one circle. The antisymmetric solitons perform a direct transition to the single-peak mode. The symmetric solitons are described reasonably well by the VA. For touching (L=0) and overlapping (L<0) circles, single-peak solitons are found - asymmetric ones, trapped in either circle, and symmetric solitons centered at the midpoint of the bi-circle configuration. If the overlap is weak, the symmetric soliton is unstable. It may spontaneously leap into either circle and perform shuttle motion in it. A region of stability of the symmetric solitons appears with the increase of overlap degree. In the case of a moderately strong overlap, another SSB effect is found, in the form of a pair of symmetry-breaking and restoring bifurcations which link families of the symmetric and asymmetric solitons.
引用
收藏
页码:1977 / 1989
页数:13
相关论文
共 50 条
  • [41] Spontaneous symmetry breaking and ghost states in two-dimensional fractional nonlinear media with non-Hermitian potential
    Ming Zhong
    Zhenya Yan
    Communications Physics, 6
  • [42] Spontaneous Breaking of Time-Reversal Symmetry in Strongly Interacting Two-Dimensional Electron Layers in Silicon and Germanium
    Shamim, S.
    Mahapatra, S.
    Scappucci, G.
    Klesse, W. M.
    Simmons, M. Y.
    Ghosh, A.
    PHYSICAL REVIEW LETTERS, 2014, 112 (23)
  • [43] Spontaneous symmetry breaking and ghost states in two-dimensional fractional nonlinear media with non-Hermitian potential
    Zhong, Ming
    Yan, Zhenya
    COMMUNICATIONS PHYSICS, 2023, 6 (01)
  • [44] Two-dimensional Navier-Stokes simulation of breaking waves
    Chen, G
    Kharif, C
    Zaleski, S
    Li, J
    PHYSICS OF FLUIDS, 1999, 11 (01) : 121 - 133
  • [45] A local model for the simulation of two-dimensional spilling breaking waves
    Muscari, R
    Di Mascio, A
    JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2003, 8 (02) : 61 - 67
  • [46] Spontaneous soliton symmetry breaking in two-dimensional coupled Bose-Einstein condensates supported by optical lattices
    Gubeskys, Arthur
    Malomed, Boris A.
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [47] Modified spontaneous emission from a two-dimensional photonic crystal
    Zeng, Y
    Chen, XS
    Lu, W
    PHYSICAL REVIEW E, 2004, 70 (04):
  • [48] Spontaneous emission in the near field of two-dimensional photonic crystals
    Koenderink, AF
    Kafesaki, M
    Soukoulis, CM
    Sandoghdar, V
    OPTICS LETTERS, 2005, 30 (23) : 3210 - 3212
  • [49] Two-Dimensional Nonlinear Thouless Pumping of Matter Waves
    Fu, Qidong
    Wang, Peng
    Kartashov, Yaroslav V.
    Konotop, Vladimir V.
    Ye, Fangwei
    PHYSICAL REVIEW LETTERS, 2022, 129 (18)
  • [50] Matter waves in two-dimensional arbitrary atomic crystals
    Bartolo, Nicola
    Antezza, Mauro
    PHYSICAL REVIEW A, 2014, 90 (03):