Quantum walks of two interacting particles on percolation graphs

被引:2
|
作者
Siloi, Ilaria [1 ]
Benedetti, Claudia [2 ]
Piccinini, Enrico [3 ]
Paris, Matteo G. A. [2 ]
Bordone, Paolo [4 ]
机构
[1] Univ North Texas, Dept Phys, Denton, TX 76203 USA
[2] Univ Milan, Dipartimento Fis, Quantum Technol Lab, I-20133 Milan, Italy
[3] ARCES Res Ctr, Via Toffano 2-2, I-40125 Bologna, Italy
[4] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, I-41125 Modena, Italy
关键词
D O I
10.1088/1742-6596/906/1/012017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Quantum walks on general graphs
    Kendon, Viv
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2006, 4 (05) : 791 - 805
  • [22] Controllability of quantum walks on graphs
    Francesca Albertini
    Domenico D’Alessandro
    Mathematics of Control, Signals, and Systems, 2012, 24 : 321 - 349
  • [23] Quantum walks on Cayley graphs
    Acevedo, OL
    Gobron, T
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (03): : 585 - 599
  • [24] Open quantum walks on graphs
    Attal, S.
    Petruccione, F.
    Sinayskiy, I.
    PHYSICS LETTERS A, 2012, 376 (18) : 1545 - 1548
  • [25] ON THE EIGENSPACES OF LAMPLIGHTER RANDOM WALKS AND PERCOLATION CLUSTERS ON GRAPHS
    Lehner, Franz
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (08) : 2631 - 2637
  • [26] Two-walker discrete-time quantum walks on the line with percolation
    Rigovacca, L.
    Di Franco, C.
    SCIENTIFIC REPORTS, 2016, 6
  • [27] Two-walker discrete-time quantum walks on the line with percolation
    L. Rigovacca
    C. Di Franco
    Scientific Reports, 6
  • [28] Floquet Anderson localization of two interacting discrete time quantum walks
    Malishava, Merab
    Vakulchyk, Ihor
    Fistul, Mikhail
    Flach, Sergej
    PHYSICAL REVIEW B, 2020, 101 (14)
  • [29] Percolation of interacting particles on heterogeneous surfaces
    Gimenez, M. C.
    Ramirez-Pastor, A. J.
    Nieto, F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (08) : 1521 - 1529
  • [30] Fractional scaling of quantum walks on percolation lattices
    Kendon, Viv
    Leung, Godfrey
    Bailey, Joe
    Knott, Paul
    CONDENSED MATTER AND MATERIALS PHYSICS CONFERENCE (CMMP10), 2011, 286