Quantum walks of two interacting particles on percolation graphs

被引:2
|
作者
Siloi, Ilaria [1 ]
Benedetti, Claudia [2 ]
Piccinini, Enrico [3 ]
Paris, Matteo G. A. [2 ]
Bordone, Paolo [4 ]
机构
[1] Univ North Texas, Dept Phys, Denton, TX 76203 USA
[2] Univ Milan, Dipartimento Fis, Quantum Technol Lab, I-20133 Milan, Italy
[3] ARCES Res Ctr, Via Toffano 2-2, I-40125 Bologna, Italy
[4] Univ Modena & Reggio Emilia, Dipartimento Sci Fis Informat & Matemat, I-41125 Modena, Italy
关键词
D O I
10.1088/1742-6596/906/1/012017
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We address the dynamics of two indistinguishable interacting particles moving on a dynamical percolation graph, i.e., a graph where the edges are independent random telegraph processes whose values jump between 0 and 1, thus mimicking percolation. The interplay between the particle interaction strength, initial state and the percolation rate determine different dynamical regimes for the walkers. We show that, whenever the walkers are initially localised within the interaction range, fast noise enhances the particle spread compared to the noiseless case.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Coined quantum walks on percolation graphs
    Leung, Godfrey
    Knott, Paul
    Bailey, Joe
    Kendon, Viv
    NEW JOURNAL OF PHYSICS, 2010, 12
  • [2] Noisy quantum walks of two indistinguishable interacting particles
    Siloi, Ilaria
    Benedetti, Claudia
    Piccinini, Enrico
    Piilo, Jyrki
    Maniscalco, Sabrina
    Paris, Matteo G. A.
    Bordone, Paolo
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [3] Discrete time quantum walks on percolation graphs
    Bálint Kollár
    Jaroslav Novotný
    Tamás Kiss
    Igor Jex
    The European Physical Journal Plus, 129
  • [4] Discrete time quantum walks on percolation graphs
    Kollar, Balint
    Novotny, Jaroslav
    Kiss, Tamas
    Jex, Igor
    EUROPEAN PHYSICAL JOURNAL PLUS, 2014, 129 (05):
  • [5] Asymptotic Dynamics of Coined Quantum Walks on Percolation Graphs
    Kollar, B.
    Kiss, T.
    Novotny, J.
    Jex, I.
    PHYSICAL REVIEW LETTERS, 2012, 108 (23)
  • [6] Continuous-time quantum walks on dynamical percolation graphs
    Benedetti, Claudia
    Rossi, Matteo A. C.
    Paris, Matteo G. A.
    EPL, 2018, 124 (06)
  • [7] Cooperative bound states in quantum walks of interacting particles
    Oliveira, M.F.V.
    Santos, M.S.
    Coêlho, Michele B.
    de Moura, F.A.B.F.
    Dias, W.S.
    Physica A: Statistical Mechanics and its Applications, 2024, 640
  • [8] Cooperative bound states in quantum walks of interacting particles
    Oliveira, M. F. V.
    Santos Junior, M. S.
    Coelho, Michele B.
    de Moura, F. A. B. F.
    Dias, W. S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2024, 640
  • [9] Random walks, polymers, percolation, and quantum gravity in two dimensions
    Duplantier, B
    PHYSICA A, 1999, 263 (1-4): : 452 - 465
  • [10] Time evolution of continuous-time quantum walks on dynamical percolation graphs
    Darazs, Zoltan
    Kiss, Tamas
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (37)