Active magnetic regenerator performance enhancement using passive magnetic materials

被引:16
|
作者
Rowe, A. [1 ]
Tura, A. [1 ]
机构
[1] Univ Victoria, Dept Mech Engn, Inst Integrated Energy Syst, Victoria, BC V8W 3P6, Canada
关键词
magnetic refrigeration; AMR; demagnetization; gadolinium; flux shimming;
D O I
10.1016/j.jmmm.2007.11.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic refrigeration devices using permanent magnets are currently limited to useful field strengths of less than 2 T, and more practically less than 1.5 T. In this range, the useful magnetocaloric effect is less than 6K and limits the cooling power of active magnetic regenerator (AMR) devices. Maximizing the useful magnetocaloric effect is critical in enabling commercially viable permanent magnet devices, and methods of increasing the net change in magnetic field would be beneficial. It has been shown [O. Peksoy, A. Rowe, J. Magn. Magn. Mater. 288 (2005) 424] that the geometry of a regenerator and the magnetic properties of the refrigerant can alter the local magnetic field, H. This is called demagnetization. A numerical model is used to study demagnetizing effects in a single-material AMR. The use of additional passive magnetic material to reduce demagnetization is examined and suggests that augmenting the effective field, H, is possible. Numerical results are validated with experiments in near room temperature using AMRs consisting of Gd and Gd0.74Tb0.26 adjacent to layers composed of 1010 carbon steel. Experimental data show an increase in the no-load temperature span for certain operating conditions and confirm the beneficial impact of using passive magnetic material to reduce demagnetization effects at low fields. (c) 2007 Elsevier B. V. All rights reserved.
引用
收藏
页码:1357 / 1363
页数:7
相关论文
共 50 条
  • [41] Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator
    Plaznik, Uros
    Tusek, Jaka
    Kitanovski, Andrej
    Poredos, Alojz
    APPLIED THERMAL ENGINEERING, 2013, 59 (1-2) : 52 - 59
  • [42] Evaluation of Active Magnetic Regenerator with Mn-based Compound as Magnetic Refrigerant
    Kawanami, T.
    Komiya, T.
    Wada, H.
    Yamashita, K.
    Onishi, T.
    Soejima, K.
    6TH IIR/IIF INTERNATIONAL CONFERENCE ON MAGNETIC REFRIGERATION (THERMAG VI), 2014, : 65 - 66
  • [43] Improved modelling of a parallel plate active magnetic regenerator
    Engelbrecht, K.
    Tusek, J.
    Nielsen, K. K.
    Kitanovski, A.
    Bahl, C. R. H.
    Poredos, A.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2013, 46 (25)
  • [44] 1D model of an active magnetic regenerator
    Nikkola, P.
    Mahmed, C.
    Bali, M.
    Sari, O.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2014, 37 : 43 - 50
  • [45] Experimental results for a novel rotary active magnetic regenerator
    Engelbrecht, K.
    Eriksen, D.
    Bahl, C. R. H.
    Bjork, R.
    Geyti, J.
    Lozano, J. A.
    Nielsen, K. K.
    Saxild, F.
    Smith, A.
    Pryds, N.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (06): : 1498 - 1505
  • [46] A numerical model of an active magnetic regenerator refrigeration system
    Engelbrecht, KL
    Nellis, GF
    Klein, SA
    CRYOCOOLERS 13, 2005, : 471 - 480
  • [47] ANALYSIS OF AN ACTIVE MAGNETIC REGENERATOR MADE OF GADOLINIUM WIRES
    Vuarnoz, D.
    Kawanami, T.
    23RD IIR INTERNATIONAL CONGRESS OF REFRIGERATION, 2011, 23 : 1144 - 1151
  • [48] NEW MAGNETIC REGENERATOR MATERIALS WITH BROAD PEAKS OF MAGNETIC SPECIFIC-HEAT
    MAKUUCHI, H
    AIKAWA, T
    MATSUMOTO, K
    HASHIMOTO, T
    LI, R
    ONISHI, A
    SATOH, T
    KANAZAWA, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1995, 34 (8A): : L1003 - L1006
  • [49] Performance Analysis and Parametric Study of an Active Magnetic Regenerator Based on the Design of Experiments Approach
    Bouchekara, H. R. E. H.
    Nahas, M.
    Simsim, M. T.
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (04) : 3147 - 3159
  • [50] Numerical Optimization on the Ends Structure of Active Magnetic Regenerator
    Guo, Xiao-Hui
    Shen, Jun
    Li, Ke
    Li, Zhen-Xing
    Gao, Xin-Qiang
    Dai, Wei
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2019, 40 (10): : 2215 - 2219