Active magnetic regenerator performance enhancement using passive magnetic materials

被引:16
|
作者
Rowe, A. [1 ]
Tura, A. [1 ]
机构
[1] Univ Victoria, Dept Mech Engn, Inst Integrated Energy Syst, Victoria, BC V8W 3P6, Canada
关键词
magnetic refrigeration; AMR; demagnetization; gadolinium; flux shimming;
D O I
10.1016/j.jmmm.2007.11.018
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic refrigeration devices using permanent magnets are currently limited to useful field strengths of less than 2 T, and more practically less than 1.5 T. In this range, the useful magnetocaloric effect is less than 6K and limits the cooling power of active magnetic regenerator (AMR) devices. Maximizing the useful magnetocaloric effect is critical in enabling commercially viable permanent magnet devices, and methods of increasing the net change in magnetic field would be beneficial. It has been shown [O. Peksoy, A. Rowe, J. Magn. Magn. Mater. 288 (2005) 424] that the geometry of a regenerator and the magnetic properties of the refrigerant can alter the local magnetic field, H. This is called demagnetization. A numerical model is used to study demagnetizing effects in a single-material AMR. The use of additional passive magnetic material to reduce demagnetization is examined and suggests that augmenting the effective field, H, is possible. Numerical results are validated with experiments in near room temperature using AMRs consisting of Gd and Gd0.74Tb0.26 adjacent to layers composed of 1010 carbon steel. Experimental data show an increase in the no-load temperature span for certain operating conditions and confirm the beneficial impact of using passive magnetic material to reduce demagnetization effects at low fields. (c) 2007 Elsevier B. V. All rights reserved.
引用
收藏
页码:1357 / 1363
页数:7
相关论文
共 50 条
  • [1] Maximum performance of an active magnetic regenerator
    Benke, Dimitri
    Fries, Maximilian
    Gottschall, Tino
    Ohmer, Dominik
    Taubel, Andreas
    Skokov, Konstantin
    Gutfleisch, Oliver
    APPLIED PHYSICS LETTERS, 2021, 119 (20)
  • [2] The influence of the magnetic field on the performance of an active magnetic regenerator (AMR)
    Bjork, R.
    Engelbrecht, K.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2011, 34 (01): : 192 - 203
  • [3] Performance assessment of a rotary active magnetic regenerator prototype using gadolinium
    Masche, M.
    Liang, J.
    Engelbrecht, K.
    Bahl, C. R. H.
    APPLIED THERMAL ENGINEERING, 2022, 204
  • [4] Performance Simulation of the Active Magnetic Regenerator under a Pulsed Magnetic Field
    Shen, Limei
    Tong, Xiao
    Li, Liang
    Lv, Yiliang
    Liu, Zeyu
    Xie, Junlong
    ENERGIES, 2022, 15 (18)
  • [5] Gd-Zn alloys as active magnetic regenerator materials for magnetic refrigeration
    Pecharsky, VK
    Gschneidner, KA
    CRYOCOOLERS 10, 1999, : 629 - 637
  • [6] Assessment of demagnetization phenomena in the performance of an active magnetic regenerator
    Trevizoli, Paulo V.
    Barbosa, Jader R., Jr.
    Oliveira, Pablo A.
    Canesin, Fabio C.
    Ferreira, Rogerio T. S.
    INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2012, 35 (04): : 1043 - 1054
  • [7] Performance assessment of a triangular microchannel active magnetic regenerator
    Liang, Jierong
    Engelbrecht, Kurt
    Nielsen, Kaspar K.
    Loewe, Konrad
    Vieyra, Hugo
    Barcza, Alexander
    Bahl, Christian R. H.
    APPLIED THERMAL ENGINEERING, 2021, 186
  • [8] Effects of flow balancing on active magnetic regenerator performance
    Eriksen, D.
    Engelbrecht, K.
    Bahl, C. R. H.
    Bjork, R.
    Nielsen, K. K.
    APPLIED THERMAL ENGINEERING, 2016, 103 : 1 - 8
  • [9] Performance investigation of a high-field active magnetic regenerator
    Teyber, Reed
    Holladay, Jamelyn
    Meinhardt, Kerry
    Polikarpov, Evgueni
    Thomsen, Edwin
    Cui, Jun
    Rowe, Andrew
    Barclay, John
    APPLIED ENERGY, 2019, 236 : 426 - 436
  • [10] Impacts of configuration losses on active magnetic regenerator device performance
    Niknia, I.
    Campbell, O.
    Christiaanse, T. V.
    Govindappa, P.
    Teyber, R.
    Trevizoli, P. V.
    Rowe, A.
    APPLIED THERMAL ENGINEERING, 2016, 106 : 601 - 612