The analysis of motion in natural scenes using a spatiotemporal/spatiotemporal-frequency representation

被引:0
|
作者
Reed, TR
机构
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It has been shown that motion can be characterized in the spatiotemporal-frequency (Fourier) domain, and that this phenomenon can be exploited for the computation of optical flow. However in practical (natural) sequences, the signatures of the different motions cannot be resolved in the Fourier domain, nor associated with their respective regions in the image sequence. In this paper we consider the application of a spatiotemporal/spatiotemporal-frequency representation (a 3-D version of the widely, used Gabor transform) to the computation of optical flow in natural scenes.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 50 条
  • [31] Decoupling and Recoupling Spatiotemporal Representation for RGB-D-based Motion Recognition
    Zhou, Benjia
    Wang, Pichao
    Wan, Jun
    Liang, Yanyan
    Wang, Fan
    Zhang, Du
    Lei, Zhen
    Li, Hao
    Jin, Rong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 20122 - 20131
  • [32] An analysis of the spatiotemporal evolution of traditional medicine in China using point-area representation
    Xiaojing Gan
    Hong Wang
    Ling Ye
    npj Heritage Science, 13 (1):
  • [33] Visual Tracking Using a Pixelwise Spatiotemporal Oriented Energy Representation
    Cannons, Kevin J.
    Gryn, Jacob M.
    Wildes, Richard P.
    COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 : 511 - 524
  • [34] Spatiotemporal Representation of Driving Scenarios and Classification using Neural Networks
    Gruner, Richard
    Henzler, Philip
    Hinz, Gereon
    Eckstein, Corinna
    Knoll, Alois
    2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 1782 - 1788
  • [35] Locally spatiotemporal saliency representation: The role of independent component analysis
    Jiang, T
    Jiang, XZ
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 997 - 1003
  • [36] Spacetime Texture Representation and Recognition Based on a Spatiotemporal Orientation Analysis
    Derpanis, Konstantinos G.
    Wildes, Richard P.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (06) : 1193 - 1205
  • [37] Representation and analysis of spatiotemporal encounters published in online social networks
    Bruno N. Moreno
    Valéria C. Times
    Stan Matwin
    Social Network Analysis and Mining, 2021, 11
  • [38] Representation and analysis of spatiotemporal encounters published in online social networks
    Moreno, Bruno N.
    Times, Valeria C.
    Matwin, Stan
    SOCIAL NETWORK ANALYSIS AND MINING, 2021, 11 (01)
  • [39] Power grid frequency prediction using spatiotemporal modeling
    Lenzi, Amanda
    Bessac, Julie
    Anitescu, Mihai
    STATISTICAL ANALYSIS AND DATA MINING, 2021, 14 (06) : 662 - 675
  • [40] SPATIOTEMPORAL PATTERN OF FREQUENCY REPRESENTATION IN THE AUDITORY-CORTEX OF GUINEA-PIGS
    TANIGUCHI, I
    HORIKAWA, J
    MORIYAMA, T
    NASU, M
    NEUROSCIENCE LETTERS, 1992, 146 (01) : 37 - 40