On stability and instability of standing waves for the nonlinear Schrodinger equation with an inverse-square potential
被引:21
|
作者:
Bensouilah, Abdelwahab
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, FranceUniv Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
Bensouilah, Abdelwahab
[1
]
Van Duong Dinh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, FranceUniv Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
Van Duong Dinh
[2
]
Zhu, Shihui
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Dept Math, Chengdu 610066, Peoples R China
Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R ChinaUniv Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
Zhu, Shihui
[3
,4
]
机构:
[1] Univ Lille 1, UFR Math, CNRS, Lab Paul Painleve,UMR 8524, F-59655 Villeneuve Dascq, France
[2] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[3] Sichuan Normal Univ, Dept Math, Chengdu 610066, Peoples R China
[4] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
We consider the stability of standing waves for the focusing nonlinear Schrodinger equation with an inverse-square potential. Using the profile decomposition arguments, we show that in the L-2-subcritical case, i.e., 0 < alpha < 4/d, the sets of ground state standing waves are orbitally stable. In the L-2-critical case, i.e., alpha = 4/d, we show that ground state standing waves are strongly unstable by blow-up. Published by AIP Publishing.
机构:
Tokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, JapanTokyo Univ Sci, Dept Math, Shinjuku Ku, 1-3 Kagurazaka, Tokyo 1628601, Japan