Impact of annealing treatment before buffer layer deposition on Cu2ZnSn(S, Se)4 solar cells

被引:34
|
作者
Hironiwa, Daisuke [1 ]
Sakai, Noriyuki [2 ]
Kato, Takuya [2 ]
Sugimoto, Hiroki [2 ]
Tang, Zeguo [1 ]
Chantana, Jakapan [3 ]
Minemoto, Takashi [3 ]
机构
[1] Ritsumeikan Univ, Ritsumeikan Global Innovat Res Org, Kusatsu, Shiga 5258577, Japan
[2] Solar Frontier KK, Atsugi Res Ctr, Atsugi, Kanagawa 2430206, Japan
[3] Ritsumeikan Univ, Dept Elect & Elect Engn, Kusatsu, Shiga 5258577, Japan
关键词
Cu2ZnSn(S; Se)(4); Solar cells; Annealing treatment; Photoluminescence; Carrier density; Hole mobility;
D O I
10.1016/j.tsf.2014.11.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Cu2ZnSn(S, Se)(4) (CZTSSe) solar cells were fabricated with an annealing treatment before the deposition of buffer layers to improve their photovoltaic performance. The CZTSSe absorbers were produced by sulfurization and selenization of metallic precursors. The efficiency of the solar cells increased from 5.5% without the annealing treatment to 8.8% with the annealing treatment at a temperature of 200 degrees C before buffer layer fabrication. Photoluminescence (PL) measurements revealed that the density of defects in the CZTSSe absorber that acted as non-radiative recombination centers decreased with the annealing treatment. The PL peak intensity exhibited a linear relationship with the open circuit voltage and the fill factor. In addition, the carrier density and hole mobility of the CZTSSe absorbers, which were respectively investigated by capacitance-voltage and Hall effect measurements, increased with the annealing treatment, thus improving cell performance. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:151 / 153
页数:3
相关论文
共 50 条
  • [31] Optimization of CdS Buffer Layer for High Efficiency Earth-Abundant Cu2ZnSn(S, Se)4 Thin Film Solar Cells
    Gang, Myeng Gil
    Chalapathy, R. B. V.
    Kim, Jihun
    Hong, Chang Woo
    He, Mingrui
    Kim, Jin Hyeok
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2018, 10 (04) : 503 - 511
  • [32] Sodium doping of solution-processed Cu2ZnSn(S,Se)4 thin film and its effect on Cu2ZnSn(S,Se)4 based solar cells
    Jiang, Dongyue
    Sui, Yingrui
    He, Wenjie
    Wang, Zhanwu
    Wang, Fengyou
    Yao, Bin
    Yang, Lili
    VACUUM, 2021, 184
  • [33] Improvement of Cu2ZnSn(S,Se)4 solar cell efficiency by surface treatment
    Furuta, Kento
    Sakai, Noriyuki
    Kato, Takuya
    Sugimoto, Hiroki
    Kurokawa, Yasuyoshi
    Yamada, Akira
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 12, NO 6, 2015, 12 (06): : 704 - 707
  • [34] Sprayed Cu2ZnSn(S,Se)4 Solar Cells with Controlled S/(S plus Se) Ratio
    Choo, Chanho
    Lim, Dain
    Kim, Sunwoong
    Yoo, Hyesun
    Kim, Seongyeon
    Kim, Junho
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2018, 13 (11) : 1725 - 1728
  • [35] Optimizing the window layer for achieving over 10% efficient Cu2ZnSn(S, Se)4 solar cells
    He, Yu
    Zhao, Chenxi
    Lu, Zecheng
    Guo, Ning
    Luan, Hongmei
    Yang, Yanchun
    Liu, Ruijian
    Zhu, Chengjun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2024, 269
  • [36] Efficiency Improvement of Flexible Cu2ZnSn(S,Se)4 Solar Cells by Window Layer Interface Engineering
    Sun, Quanzhen
    Deng, Hui
    Yan, Qiong
    Lin, Beibei
    Xie, Weihao
    Tang, Jianlong
    Zhang, Caixia
    Zheng, Qiao
    Wu, Jionghua
    Yu, Jinling
    Cheng, Shuying
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (12): : 14467 - 14475
  • [37] Insight into the role of post-annealing in air for high efficient Cu2ZnSn(S,Se)4 solar cells
    Gao, Shoushuai
    Zhang, Yi
    Ao, Jianping
    Li, Xiuling
    Qiao, Shuang
    Wang, Ying
    Lin, Shuping
    Zhang, Zhaojing
    Wang, Dongxiao
    Zhou, Zhiqiang
    Sun, Guozhong
    Wang, Shufang
    Sun, Yun
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2018, 182 : 228 - 236
  • [38] Behavior of indium alloying with Cu2ZnSn(S,Se)4 and its effect on performances of Cu2ZnSn(S,Se)4-based solar cell
    Xiao, Zhenyu
    Luan, Hongmei
    Liu, Ruijian
    Yao, Bin
    Li, Yongfeng
    Ding, Zhanhui
    Yang, Gang
    Deng, Rui
    Wang, Gang
    Zhang, Zhenzhong
    Zhang, Ligong
    Zhao, Haifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 767 : 439 - 447
  • [39] Phase segregations and thickness of the Mo(S,Se)2 layer in Cu2ZnSn(S,Se)4 solar cells at different sulfurization temperatures
    Shin, Seung Wook
    Gurav, K. V.
    Hong, Chang Woo
    Gwak, JiHye
    Choi, Hye Rim
    Vanalakar, S. A.
    Yun, Jae Ho
    Lee, Jeong Yong
    Moon, Jong Ha
    Kim, Jin Hyeok
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2015, 143 : 480 - 487