Selective laser melting of the Al0.3CoCrFeNiCu high-entropy alloy: Processing parameters, microstructure and mechanical properties

被引:29
|
作者
Yuan, Biliang [1 ]
Li, Chuanqiang [1 ]
Dong, Yong [1 ]
Yang, Yang [2 ]
Zhang, Peng [1 ]
Zhang, Zhengrong [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Sch Electromech Engn, Guangdong Prov Key Lab Minimally Invas Surg Instru, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Selective laser melting; High-entropy alloy; Microstructure; Mechanical properties; Defects; BEHAVIOR;
D O I
10.1016/j.matdes.2022.110847
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The as-printed Al0.3CoCrFeNiCu high-entropy alloy (HEA) was fabricated from gas-atomized powders by selective laser melting (SLM) with the tailored printing parameters. The processing parameters, microstructural characteristics, mechanical properties and formed defects of the SLM-processed Al0.3CoCrFeNiCu HEA were examined in detail. The SLM-processed HEAs presented a simple disordered face centered cubic solid solution with columnar grains growing along the building direction and exhibiting a (001) preferred orientation. Dendritic-segregation, a common phenomenon occurring in as-cast counterparts was eliminated, thus providing a significant method to form a single-phase solid solution. The cellular structure in the columnar grains germinated perpendicular to the boundary of molten pools. In addition, dislocations induced by internal stress were observed. Accordingly, the SLM-processed Al0.3CoCrFeNiCu HEA exhibited superior microhardness , compressive strength. Finally, two types of defects were found in this SLM alloy, including irregular holes and hot cracks. The latter occurring on solid-liquid interface of molten pool were retarded by grain boundaries and then turned into muti-branches. Nevertheless, no crack-free sample could be prepared even though the printing parameters were optimized to achieve a high relative density of 99.08%, indicating this HEA was not suitable for SLM technology to prepare. (C) 2022 The Authors. Published by Elsevier Ltd.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Microstructure and nanoindentation creep behavior of CoCrFeMnNi high-entropy alloy fabricated by selective laser melting
    Xu, Zhenlin
    Zhang, Hui
    Li, Weihuo
    Mao, Aiqin
    Wang, Lin
    Song, Guangsheng
    He, Yizhu
    ADDITIVE MANUFACTURING, 2019, 28 : 766 - 771
  • [32] Microstructure evolution and mechanical properties of AlxCoCrFeNi high-entropy alloys by laser melting deposition
    Huang, Liufei
    Sun, Yaoning
    Amar, Abdukadir
    Wu, Changgui
    Liu, Xue
    Le, Guomin
    Wang, Xiaoying
    Wu, Jian
    Li, Kun
    Jiang, Chunli
    Li, Jinfeng
    VACUUM, 2021, 183
  • [33] Microstructures and mechanical properties of C-containing FeCoCrNi high-entropy alloy fabricated by selective laser melting
    Zhou, Rui
    Liu, Yong
    Zhou, Chengshang
    Li, Siqin
    Wu, Wenqian
    Song, Min
    Liu, Bin
    Liang, Xiaopeng
    Liaw, P. K.
    INTERMETALLICS, 2018, 94 : 165 - 171
  • [34] Effects of annealing on the structure and mechanical properties of FeCoCrNi high-entropy alloy fabricated via selective laser melting
    Lin, Danyang
    Xu, Lianyong
    Jing, Hongyang
    Han, Yongdian
    Zhao, Lei
    Minami, Fumiyoshi
    ADDITIVE MANUFACTURING, 2020, 32
  • [35] Relationship between the microstructure and mechanical properties of an equiatomic AlCoCrFeNi high-entropy alloy fabricated by selective electron beam melting
    Shiratori, Hiroshi
    Fujieda, Tadashi
    Yamanaka, Kenta
    Koizumi, Yuichiro
    Kuwabara, Kosuke
    Kato, Takahiko
    Chiba, Akihiko
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 656 : 39 - 46
  • [36] Effect of TiC addition on the microstructure and mechanical properties of FeCoCrNiMn high entropy alloy fabricated by selective laser melting
    Osman, Hamza
    Liu, Lixue
    Pan, Jie
    Guo, Rong
    Xu, Jingyu
    Zhang, Pengcheng
    Liu, Lin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 982
  • [37] Comparison of microstructure and properties of CoCrFeMnNi high-entropy alloy from selective laser melting and directed energy deposition processes
    Savinov, Roman
    Wang, Yachao
    Wang, Jin
    Shi, Jing
    49TH SME NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE (NAMRC 49, 2021), 2021, 53 : 435 - 442
  • [38] Optimization of friction stir processing parameters to improve mechanical properties and microstructure of Al5083 aluminum alloy reinforced with AlCoCrFeNiSi high-entropy alloy
    Kumaravel, S.
    Suresh, P.
    PHYSICA SCRIPTA, 2024, 99 (10)
  • [39] PROCESSING AND PROPERTIES OF Al0.3CrCuFeNi2 SINGLE CRYSTAL HIGH-ENTROPY ALLOY
    Zhang Sufang
    Yang Xiao
    Zhang Yong
    ACTA METALLURGICA SINICA, 2013, 49 (11) : 1473 - 1480
  • [40] Macrostructure, Microstructure, and Mechanical Properties of Al0.2CoCrFeNi High-Entropy Alloy Produced by Vacuum Induction Melting
    Dudala, Srinivas
    Krishna, S. Chenna
    Korla, Rajesh
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2024, 77 (06) : 1489 - 1497