Finite Groups with Arithmetic Restrictions on Maximal Subgroups

被引:2
|
作者
Maslova, N. V. [1 ,2 ]
机构
[1] Russian Acad Sci, Krasovskii Inst Math & Mech, Ural Branch, Ekaterinburg 620990, Russia
[2] Eltsyn Ural Fed Univ, Ekaterinburg 620002, Russia
关键词
NONABELIAN COMPOSITION FACTORS; SPECTRUM;
D O I
10.1007/s10469-015-9324-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:65 / 69
页数:5
相关论文
共 50 条
  • [31] On Π-property of some maximal subgroups of Sylow subgroups of finite groups
    Qiu, Zhengtian
    Liu, Jianjun
    Chen, Guiyun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (04) : 1349 - 1358
  • [32] FINITE GROUPS WITH PRESCRIBED Φ-SIMPLE MAXIMAL SUBGROUPS
    Bazhanova, E. N.
    Vedernikov, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2021, 62 (06) : 981 - 993
  • [33] Bounds on the Number of Maximal Subgroups of Finite Groups
    Adolfo Ballester-Bolinches
    Ramón Esteban-Romero
    Paz Jiménez-Seral
    Results in Mathematics, 2023, 78
  • [34] Indices of maximal subgroups of finite soluble groups
    Monakhov V.S.
    Algebra and Logic, 2004, 43 (4) : 230 - 237
  • [35] On maximal subgroups of finite groups and theta pairs
    BallesterBolinches, A
    Zhao, YQ
    COMMUNICATIONS IN ALGEBRA, 1996, 24 (13) : 4199 - 4209
  • [36] On 2-maximal subgroups of finite groups
    Konovalova, Marina N.
    Monakhov, Victor S.
    Sokhor, Irina L.
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (01) : 96 - 103
  • [37] Finite groups with abelian second maximal subgroups
    Meng, Wei
    Chen, Wei
    Lu, Jiakuan
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (04) : 1577 - 1583
  • [38] Maximal and Sylow subgroups of solvable finite groups
    Monakhov, VS
    Gribovskaya, EE
    MATHEMATICAL NOTES, 2001, 70 (3-4) : 545 - 552
  • [39] Finite groups with decomposable cofactors of maximal subgroups
    Lemeshev, I. V.
    Monakhov, V. S.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2011, 17 (04): : 181 - 188
  • [40] ON MAXIMAL-SUBGROUPS OF FINITE-GROUPS
    BALLESTERBOLINCHES, A
    EZQUERRO, LM
    COMMUNICATIONS IN ALGEBRA, 1991, 19 (08) : 2373 - 2394