A feasibility study on deep learning-based individualized 3D dose distribution prediction

被引:18
|
作者
Ma, Jianhui [1 ,2 ]
Nguyen, Dan [2 ]
Bai, Ti [2 ]
Folkerts, Michael [2 ]
Jia, Xun [2 ]
Lu, Weiguo [2 ]
Zhou, Linghong [1 ]
Jiang, Steve [2 ]
机构
[1] Southern Med Univ, Sch Biomed Engn, Guangzhou, Peoples R China
[2] Univ Texas Southwestern Med Ctr Dallas, Dept Radiat Oncol, Med Artificial Intelligence & Automat MAIA Lab, Dallas, TX 75390 USA
基金
美国国家卫生研究院;
关键词
deep learning; dose volume histogram; Pareto optimal dose distribution prediction; physicians' preferred trade-offs; OPTIMIZATION; QUALITY;
D O I
10.1002/mp.15025
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An approximately optimal dose distribution corresponding to a specific patient's anatomy can be predicted by using pre-trained deep learning (DL) models. However, dose distributions are often optimized based not only on patient-specific anatomy but also on physicians' preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing or among different OARs. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the patient's anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods In this work, we developed a modified U-Net network to predict the 3D dose distribution by using patient PTV/OAR masks and the desired DVH as inputs. The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with feature maps encoded from the PTV/OAR masks. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results The trained model can predict a 3D dose distribution that is approximately Pareto optimal while having the DVH closest to the input desired DVH. We calculated the difference between the predicted dose distribution and the optimized dose distribution that has a DVH closest to the desired one for the PTV and for all OARs as a quantitative evaluation. The largest absolute error in mean dose was about 3.6% of the prescription dose, and the largest absolute error in the maximum dose was about 2.0% of the prescription dose. Conclusions In this feasibility study, we have developed a 3D U-Net model with the patient's anatomy and the desired DVH curves as inputs to predict an individualized 3D dose distribution that is approximately Pareto optimal while having the DVH closest to the desired one. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
引用
收藏
页码:4438 / 4447
页数:10
相关论文
共 50 条
  • [31] Deep learning-based action recognition with 3D skeleton: A survey
    Xing, Yuling
    Zhu, Jia
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2021, 6 (01) : 80 - 92
  • [32] 3D shape sensing and deep learning-based segmentation of strawberries
    Le Louëdec J.
    Cielniak G.
    Computers and Electronics in Agriculture, 2021, 190
  • [33] Prediction of Mandibular ORN Incidence from 3D Radiation Dose Distribution Maps Using Deep Learning
    Humbert-Vidan, Laia
    Patel, Vinod
    Andlauer, Robin
    King, Andrew P.
    Urbano, Teresa Guerrero
    APPLICATIONS OF MEDICAL ARTIFICIAL INTELLIGENCE, AMAI 2022, 2022, 13540 : 49 - 58
  • [34] Prediction of 3D Dose Distribution and PTV Contour Via Deep Multi-Task Learning Network
    Guo, F.
    Kong, F.
    Li, Y.
    Zhou, L.
    Song, T.
    MEDICAL PHYSICS, 2018, 45 (06) : E223 - E223
  • [35] A Feasibility Study for Deep Learning-Based Efficient Monte Carlo Dose Calculation Method in Radiotherapy
    Lu, X.
    Li, Y.
    Mengke, Q.
    Zhou, L.
    Song, T.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [36] 3D DOSE DISTRIBUTION FOR GYN WITH DOSE ACCUMULATION BETWEEN INSERTIONS: FEASIBILITY STUDY.
    Reniers, B.
    Janssens, G.
    Verhaegen, F.
    RADIOTHERAPY AND ONCOLOGY, 2009, 92 : S102 - S102
  • [37] Deep learning-based survival prediction using DNA methylation-derived 3D genomic information
    Yang, Jeewon
    Lee, Dohoon
    Koo, Bonil
    Jeong, Dabin
    Kim, Sun
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [38] Survey on deep learning-based 3D object detection in autonomous driving
    Liang, Zhenming
    Huang, Yingping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2023, 45 (04) : 761 - 776
  • [39] Deep Learning-Based Segmentation of 3D Volumetric Image and Microstructural Analysis
    Mahmud, Bahar Uddin
    Hong, Guan Yue
    Mamun, Abdullah Al
    Ping, Em Poh
    Wu, Qingliu
    SENSORS, 2023, 23 (05)
  • [40] Deep learning-based 3D brain multimodal medical image registration
    Liwei Deng
    Qi Lan
    Qiang Zhi
    Sijuan Huang
    Jing Wang
    Xin Yang
    Medical & Biological Engineering & Computing, 2024, 62 : 505 - 519