Relating multipliers and transplantation for Fourier-Bessel expansions and Hankel transform

被引:29
|
作者
Betancor, JJ [1 ]
Stempak, K
机构
[1] Univ La Laguna, Dept Anal Matemat, La Laguna 38271, Spain
[2] Politechniki Wroclawskiej, Inst Matemat, PL-50370 Wroclaw, Poland
关键词
D O I
10.2748/tmj/1178207534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Proved are transference results that show connections between: a) multipliers for the Fourier-Bessel series and multipliers for the Hankel transform: b) maximal operators defined by Fourier-Bessel multipliers and maximal operators given by Hankel transform multipliers: c) Fourier-Bessel transplantation and Hankel transform transplantation. In some way the connections described in a) and b) can be seen as multi-dimensional extensions of the classical results of Igari, and Kenig and Tomas for the one dimensional Fourier transform. We prove our results for the non-modified Hankel transform in the power weight setting, and this allows to translate them also to the context of the modified Hankel transform, Together with Gilbert's transplantation theorem, our transference shows that harmonic analysis results for the Hankel transform of arbitrary order are consequences of corresponding results fur the cosine expansions.
引用
收藏
页码:109 / 129
页数:21
相关论文
共 50 条
  • [41] The solutions of then-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution
    Hüseyin Yildirim
    M. Zeki Sarikaya
    Sermin öztürk
    Proceedings Mathematical Sciences, 2004, 114 : 375 - 387
  • [42] A New Method for Asymmetrical Abel Inversion Using Fourier-Bessel Expansions
    Huailin Ruan
    Baonian Wan
    International Journal of Infrared and Millimeter Waves, 2000, 21 : 1973 - 1987
  • [43] The solutions of the it-dimensional Bessel diamond operator and the Fourier-Bessel transform of their convolution
    Yildirim, H
    Sarikaya, MZ
    Öztürk, S
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2004, 114 (04): : 375 - 387
  • [44] Laguerre expansion on the Heisenberg group and Fourier-Bessel transform on ℂn
    Der-Chen Chang
    Peter Griener
    Jingzhi Tie
    Science in China Series A: Mathematics, 2006, 49 : 1722 - 1739
  • [45] Linear canonical Fourier-Bessel wavelet transform: properties and inequalities
    Mohamed, H. B.
    Saoudi, A.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2024, 35 (04) : 270 - 290
  • [46] An Analog of Titchmarsh's Theorem for the Generalized Fourier-Bessel Transform
    Daher, R.
    El Hamma, M.
    El Ouadih, S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2016, 37 (02) : 114 - 119
  • [47] NUMERICAL INVERSION OF THE LAPLACE TRANSFORM BASED ON THE FOURIER-BESSEL EXPANSION
    SELEZOV, IT
    KORSUNSKII, SV
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1988, (11): : 24 - 30
  • [48] A new method for asymmetrical Abel inversion using Fourier-Bessel expansions
    Ruan, HL
    Wan, BN
    INTERNATIONAL JOURNAL OF INFRARED AND MILLIMETER WAVES, 2000, 21 (12): : 1973 - 1987
  • [49] PALEY'S INEQUALITY AND HARDY'S INEQUALITY FOR THE FOURIER-BESSEL EXPANSIONS
    Sato, Kunio
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2005, 6 (03) : 441 - 451
  • [50] Full Fourier-Bessel transform and the algebra of singular pseudodifferential operators
    Katrakhov, V. V.
    Lyakhov, L. N.
    DIFFERENTIAL EQUATIONS, 2011, 47 (05) : 681 - 695