A Robust Sparse Representation Model for Hyperspectral Image Classification

被引:20
|
作者
Huang, Shaoguang [1 ]
Zhang, Hongyan [2 ]
Pizurica, Aleksandra [1 ]
机构
[1] Univ Ghent, Dept Telecommun & Informat Proc, Sint Pietersnieuwstr 41, B-9000 Ghent, Belgium
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Luoyu Rd 129, Wuhan 430079, Hubei, Peoples R China
来源
SENSORS | 2017年 / 17卷 / 09期
关键词
robust classification; hyperspectral image; super-pixel segmentation; sparse representation; REMOTE-SENSING IMAGES; MORPHOLOGICAL PROFILES; VECTOR MACHINES; RECOVERY; PURSUIT; SUPPORT; FUSION;
D O I
10.3390/s17092087
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Sparse representation has been extensively investigated for hyperspectral image (HSI) classification and led to substantial improvements in the performance over the traditional methods, such as support vector machine (SVM). However, the existing sparsity-based classification methods typically assume Gaussian noise, neglecting the fact that HSIs are often corrupted by different types of noise in practice. In this paper, we develop a robust classification model that admits realistic mixed noise, which includes Gaussian noise and sparse noise. We combine a model for mixed noise with a prior on the representation coefficients of input data within a unified framework, which produces three kinds of robust classification methods based on sparse representation classification (SRC), joint SRC and joint SRC on a super-pixels level. Experimental results on simulated and real data demonstrate the effectiveness of the proposed method and clear benefits from the introduced mixed-noise model.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Joint sparse representation hyperspectral image classification based on spatial preprocessing
    Chen S.
    Wang X.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (09): : 2422 - 2429
  • [42] Spatial-Spectral Kernel Sparse Representation for Hyperspectral Image Classification
    Liu, Jianjun
    Wu, Zebin
    Wei, Zhihui
    Xiao, Liang
    Sun, Le
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2013, 6 (06) : 2462 - 2471
  • [43] Feature Extraction Based on Kernel Sparse Representation for Hyperspectral Image Classification
    Yuan, Haoliang
    Luo, Huiwu
    Yang, Lina
    Lu, Yang
    Wang, Yulong
    Tang, Yuan Yan
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 4071 - 4076
  • [44] Dictionary-Based, Clustered Sparse Representation for Hyperspectral Image Classification
    Qin, Zhen-tao
    Yang, Wu-nian
    Yang, Ru
    Zhao, Xiang-yu
    Yang, Teng-jiao
    JOURNAL OF SPECTROSCOPY, 2015, 2015 : 1 - 6
  • [45] JOINT LOWRANK AND SPARSE REPRESENTATION-BASED HYPERSPECTRAL IMAGE CLASSIFICATION
    Zhang, Mengmeng
    Li, Wei
    Du, Qian
    2016 8TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2016,
  • [46] Multiscale Superpixel-Based Sparse Representation for Hyperspectral Image Classification
    Zhang, Shuzhen
    Li, Shutao
    Fu, Wei
    Fang, Leiyuan
    REMOTE SENSING, 2017, 9 (02)
  • [47] Hyperspectral image classification based on spatial and spectral features and sparse representation
    Yang Jing-Hui
    Wang Li-Guo
    Qian Jin-Xi
    APPLIED GEOPHYSICS, 2014, 11 (04) : 489 - 499
  • [48] Hyperspectral Image Classification with Low-Rank Subspace and Sparse Representation
    Sumarsono, Alex
    Du, Qian
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2864 - 2867
  • [49] HYPERSPECTRAL IMAGE CLASSIFICATION USING SPARSE REPRESENTATION-BASED CLASSIFIER
    Tang, Yufang
    Li, Xueming
    Xu, Yan
    Liu, Yang
    Wang, Jizhe
    Liu, Chenyu
    Liu, Shuchang
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3450 - 3453
  • [50] Joint sparse representation of hyperspectral image classification based on secondary dictionary
    Chen S.
    Chen W.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2020, 42 (03): : 550 - 556