In this article, we provide a variational theory for nonlocal problems where nonlocality arises due to the interaction in a given horizon. With this theory, we prove well-posedness results for the weak formulation of nonlocal boundary value problems with Dirichlet, Neumann, and mixed boundary conditions for a class of kernel functions. The motivating application for nonlocal boundary value problems is the scalar stationary peridynamics equation of motion. The well-posedness results support practical kernel functions used in the peridynamics setting. We also prove a spectral equivalence estimate which leads to a mesh size independent upper bound for the condition number of an underlying discretized operator. This is a fundamental conditioning result that would guide preconditioner construction for nonlocal problems. The estimate is a consequence of a nonlocal Poincare-type inequality that reveals a horizon size quantification. We provide an example that establishes the sharpness of the upper bound in the spectral equivalence.