Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode states

被引:6
|
作者
Marian, Paulina [1 ]
Marian, Tudor A. [1 ]
机构
[1] Univ Bucharest, Ctr Adv Quantum Phys, Dept Phys, R-077125 Magurele, Romania
关键词
SEPARABILITY CRITERION; GAUSSIAN STATES; QUANTUM; INSEPARABILITY; ENTANGLEMENT; PARADOX; FORMS;
D O I
10.1103/PhysRevA.103.062224
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Certification and quantification of correlations for multipartite states of quantum systems appear to be a central task in quantum information theory. We give here a unitary quantum-mechanical perspective of both entanglement and Einstein-Podolsky-Rosen (EPR) steering of continuous-variable multimode states. This originates in the Heisenberg uncertainty relations for the canonical quadrature operators of the modes. Correlations of two-party (N vs 1)-mode states are examined by using the variances of a pair of suitable EPR-like observables. It turns out that the uncertainty sum of these nonlocal variables is bounded from below by local uncertainties and is strengthened differently for separable states and for each one-way unsteerable state. The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability of (N vs 1)-mode states in both possible ways of steering. When the states and the performed measurements are Gaussian, then these conditions are precisely the previously known criteria of separability and one-way unsteerability.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Geometry of Einstein-Podolsky-Rosen Correlations
    Chau Nguyen, H.
    Huy-Viet Nguyen
    Guehne, Otfried
    PHYSICAL REVIEW LETTERS, 2019, 122 (24)
  • [32] Multidimensional Einstein-Podolsky-Rosen steering
    Eroshenko, Yu N.
    PHYSICS-USPEKHI, 2018, 61 (03) : 320 - 320
  • [33] Einstein-Podolsky-Rosen steering and entanglement based on two-photon correlation for bipartite Gaussian states
    Zhou, Ben-yuan
    Yang, Guo-qing
    Li, Gao-xiang
    PHYSICAL REVIEW A, 2019, 99 (06)
  • [34] Einstein-Podolsky-Rosen steering in Gaussian weighted graph states
    Wang, Meihong
    Deng, Xiaowei
    Qin, Zhongzhong
    Su, Xiaolong
    PHYSICAL REVIEW A, 2019, 100 (02)
  • [35] Multipartite Einstein-Podolsky-Rosen steering sharing with separable states
    Xiang, Yu
    Su, Xiaolong
    Mista, Ladislav, Jr.
    Adesso, Gerardo
    He, Qiongyi
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [36] Quantifying Einstein-Podolsky-Rosen Steering
    Skrzypczyk, Paul
    Navascues, Miguel
    Cavalcanti, Daniel
    PHYSICAL REVIEW LETTERS, 2014, 112 (18)
  • [37] AN EXTENSION OF THE EINSTEIN-PODOLSKY-ROSEN PARADOX
    FRANSON, JD
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (04): : 531 - 531
  • [38] Relativistic Einstein-Podolsky-Rosen correlations for vector and tensor states
    Caban, Pawel
    Rembielinski, Jakub
    Wlodarczyk, Marta
    PHYSICAL REVIEW A, 2011, 83 (03):
  • [39] A RESOLUTION OF THE EINSTEIN-PODOLSKY-ROSEN PARADOX
    MUCKENHEIM, W
    LETTERE AL NUOVO CIMENTO, 1982, 35 (09): : 300 - 304
  • [40] The Einstein-Podolsky-Rosen effect and causality
    Molotkov, SN
    Nazin, SS
    JETP LETTERS, 1999, 70 (01) : 54 - 60