Higher amounts of loophole-free Bell violation using a heralded entangled source

被引:3
|
作者
Zhao, Shuai [1 ,2 ,3 ]
Cao, Wen-Fei [1 ,2 ,3 ]
Zhen, Yi-Zheng [1 ,2 ,3 ]
Chen, Changchen [4 ]
Li, Li [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Xu, Feihu [1 ,2 ,3 ]
Chen, Kai [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China
[4] MIT, Elect Res Lab, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
quantum key distribution; loophole-free Bell tests; heralded entangled source; device-independent quantum information processing; INEQUALITY; PHOTONS;
D O I
10.1088/1367-2630/ab4538
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Loophole-free Bell non-locality test plays a central role in device-independent quantum information processing tasks, such as device-independent quantum random number generation (QRNG) and quantum key distribution (QKD). Inspired by the scheme of heralded spontaneous parametric down conversion (SPDC) source proposed in (liwa C and Banaszek K 2003 Phys. Rev. A 67 030101), we present a loophole-free Bell test scheme that employs the heralded type of entangled photon pairs. Our proposal enables a much higher degree of Bell violation with realistic photonic devices over the one using the conventional SPDC source, thus allowing the implementation of device-independent QRNG and QKD with significant advantages. We anticipate that the scheme will enable variously subtle applications in device-independent quantum information processing tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis
    B. Hensen
    N. Kalb
    M. S. Blok
    A. E. Dréau
    A. Reiserer
    R. F. L. Vermeulen
    R. N. Schouten
    M. Markham
    D. J. Twitchen
    K. Goodenough
    D. Elkouss
    S. Wehner
    T. H. Taminiau
    R. Hanson
    Scientific Reports, 6
  • [32] Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis
    Hensen, B.
    Kalb, N.
    Blok, M. S.
    Dreau, A. E.
    Reiserer, A.
    Vermeulen, R. F. L.
    Schouten, R. N.
    Markham, M.
    Twitchen, D. J.
    Goodenough, K.
    Elkouss, D.
    Wehner, S.
    Taminiau, T. H.
    Hanson, R.
    SCIENTIFIC REPORTS, 2016, 6
  • [33] Proposal for a loophole-free bell test using homodyne detection -: art. no. 130409
    García-Patrón, R
    Fiurásek, J
    Cerf, NJ
    Wenger, J
    Tualle-Brouri, R
    Grangier, P
    PHYSICAL REVIEW LETTERS, 2004, 93 (13) : 130409 - 1
  • [34] Loophole-Free Bell Test for Continuous Variables via Wave and Particle Correlations
    Ji, Se-Wan
    Kim, Jaewan
    Lee, Hai-Woong
    Zubairy, M. S.
    Nha, Hyunchul
    PHYSICAL REVIEW LETTERS, 2010, 105 (17)
  • [35] A method for reaching detection efficiencies necessary for optical loophole-free Bell experiments
    Pavicic, M
    OPTICS COMMUNICATIONS, 1997, 142 (4-6) : 308 - 314
  • [36] Minimum detection efficiency for a loophole-free atom-photon bell experiment
    Cabello, Adan
    Larsson, Jan-Ake
    PHYSICAL REVIEW LETTERS, 2007, 98 (22)
  • [37] Loophole-Free Test of Local Realism via Hardy's ' s Violation
    Zhao, Si-Ran
    Zhao, Shuai
    Dong, Hai-Hao
    Liu, Wen-Zhao
    Chen, Jing-Ling
    Chen, Kai
    Zhang, Qiang
    Pan, Jian-Wei
    PHYSICAL REVIEW LETTERS, 2024, 133 (06)
  • [38] Loophole-Free Bell Test Based on Local Precertification of Photon's Presence
    Cabello, Adan
    Sciarrino, Fabio
    PHYSICAL REVIEW X, 2012, 2 (02):
  • [39] The digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments
    De Raedt, Hans
    Michielsen, Kristel
    Hess, Karl
    COMPUTER PHYSICS COMMUNICATIONS, 2016, 209 : 42 - 47
  • [40] Loophole-Free Bell Inequality Test via Preselected Macro-Qubit Entanglement
    Stobinska, M.
    Horodecki, P.
    Chhajlany, R.
    Horodecki, R.
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,