Path-dependent Hamilton-Jacobi equations in infinite dimensions

被引:25
|
作者
Bayraktar, Erhan [1 ]
Keller, Christian [2 ]
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
Path-dependent PDEs; Minimax solutions; Nonlinear evolution equations; Optimal control; PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEAR 2ND-ORDER EQUATIONS; OPTIMAL STOCHASTIC-CONTROL; BOUNDARY CONTROL-PROBLEMS; RISK-SENSITIVE CONTROL; VISCOSITY SOLUTIONS; BELLMAN EQUATIONS; STATE CONSTRAINTS; HJB EQUATIONS; SADDLE-POINT;
D O I
10.1016/j.jfa.2018.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose notions of minimax and viscosity solutions for a class of fully nonlinear path-dependent PDEs with nonlinear, monotone, and coercive operators on Hilbert space. Our main result is well-posedness (existence, uniqueness, and stability) for minimax solutions. A particular novelty is a suitable combination of minimax and viscosity solution techniques in the proof of the comparison principle. One of the main difficulties, the lack of compactness in infinite-dimensional Hilbert spaces, is circumvented by working with suitable compact subsets of our path space. As an application, our theory makes it possible to employ the dynamic programming approach to study optimal control problems for a fairly general class of (delay) evolution equations in the variational framework. Furthermore, differential games associated to such evolution equations can be investigated following the Krasovskii-Subbotin approach similarly as in finite dimensions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2096 / 2161
页数:66
相关论文
共 50 条
  • [31] Externality and Hamilton-Jacobi equations
    Loreti, P
    Caffarelli, GV
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2004, 11 (02): : 123 - 136
  • [32] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [33] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [34] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [35] VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS OCCURRING IN THE OPTIMAL-CONTROL OF EVOLUTION PROBLEMS
    CRANDALL, MG
    LIONS, PL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1987, 305 (06): : 233 - 236
  • [36] VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS .4. HAMILTONIANS WITH UNBOUNDED LINEAR TERMS
    CRANDALL, MG
    LIONS, PL
    JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 90 (02) : 237 - 283
  • [37] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [38] VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS IN INFINITE DIMENSIONS .7. THE HJB EQUATION IS NOT ALWAYS SATISFIED
    CRANDALL, MG
    LIONS, PL
    JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) : 111 - 148
  • [40] Hamilton-Jacobi equations for infinite horizon control problems with state constraints
    Frankowska, H
    Plaskacz, S
    CALCULUS OF VARIATIONS AND OPTIMAL CONTROL, 2000, 411 : 97 - 116