Research of a combined power and cooling system based on fuel rotating cooling air turbine and organic Rankine cycle on hypersonic aircraft

被引:28
|
作者
Sun, Hongchuang [1 ]
Qin, Jiang [1 ]
Li, Haowei [1 ]
Huang, Hongyan [1 ]
Yan, Peigang [1 ]
机构
[1] Harbin Inst Technol, Sch Energy Sci & Engn, Key Lab Aerosp Thermophys, Minist Ind & Informat Technol, Harbin, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Combined power and cooling system; Air turbine; Fuel rotating cooling; Organic Rankine cycle; Long-endurance and reusable hypersonic aircraft; CONVECTIVE HEAT-TRANSFER; WORKING FLUID; WASTE HEAT; PERFORMANCE EVALUATION; HYDROCARBON FUEL; GENERATION; RECOVERY; ORCS; OPTIMIZATION; PARAMETERS;
D O I
10.1016/j.energy.2019.116183
中图分类号
O414.1 [热力学];
学科分类号
摘要
Sustained power supply and thermal protection of electronic elements are two essential problems for developing long-endurance and reusable hypersonic aircrafts. In this study, a combined power and cooling (CPC) system is established between high temperature incoming air and low temperature fuel based on fuel cooling air turbine and organic Rankine cycle (ORC). The organic Rankine cycle is investigated based on thermodynamic analysis. The fuel rotating cooling air turbine is modeled with a mean diameter of 150 mm and investigated with 3D CFD simulation. The turbulence models for main flow and cooling channel are k-omega and SST, respectively. And the CFD method for air turbine is verified with land experimental test. Finally, the performance of the CPC system is theoretically researched. ORC can obviously increase the power output of the CPC system. With the designed air turbine, the real power output of the CPC system is 118.5 kW, higher by 20.7% than air turbine's power of 98.2 kW. The obtained mass flow rate of cooling air is 0.292 kg/s. The blade of the air turbine can be cooled with reasonable low mass flow rate of 5 g/s per blade. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] A Novel Fuel-Based CO2 Transcritical Cycle for Combined Cooling and Power Generation on Hypersonic Aircrafts
    He, Yijian
    Wang, Lisong
    Dong, Jiaqi
    Chen, Qifei
    ENERGIES, 2024, 17 (19)
  • [22] Techno-economic cost assessment of a combined cooling heating and power system coupled to organic Rankine cycle with life cycle method
    Chen, Yuzhu
    Hua, Huilian
    Xu, Jinzhao
    Yun, Zhonghua
    Wang, Jun
    Lund, Peter D.
    ENERGY, 2022, 239
  • [23] Research on the Combined Cycle of a Biogas Micro Gas Turbine and an Organic Rankine Cycle
    Zheng Jian
    Feng Zheng-Jiang
    Wang Jian
    Wang Yan
    Li Xin-Yi
    Zhang Ping-An
    Li Jin-Ping
    JOURNAL OF BIOBASED MATERIALS AND BIOENERGY, 2019, 13 (05) : 683 - 689
  • [24] Organic working fluids for a combined power cooling cycle
    Vilayaraghavan, S
    Goswami, DY
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2005, 127 (02): : 125 - 130
  • [25] Organic Rankine cycle combined heat and power system
    Pei, Gang
    Wang, Dongyue
    Li, Jing
    Li, Yunzhu
    Ji, Jie
    Huagong Xuebao/CIESC Journal, 2013, 64 (06): : 1993 - 2000
  • [26] Economic analysis on the combined power/refrigerating cycle air cooling system in power plant
    Chen, Lijun
    Mi, Lijun
    Xu, Chao
    Lei, Yang
    Yang, Shanrang
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2010, 30 (SUPPL.): : 54 - 58
  • [27] Economic Analysis on the Combined Power/Refrigerating Cycle for Power Plant Air Cooling System
    Chen, Lijun
    Mi, Lijun
    Xu, Chao
    Yang, Shanrang
    MATERIALS SCIENCE AND INFORMATION TECHNOLOGY, PTS 1-8, 2012, 433-440 : 7436 - 7442
  • [28] Performance evaluation of combined power and refrigerating cycle for power plant air cooling system
    Chen, Li-Jun
    Yang, Shan-Rang
    Wang, Sheng-Long
    Lu, Hong-Bo
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2009, 29 (23): : 7 - 12
  • [29] Thermodynamic Modeling of a Solar-Driven Organic Rankine Cycle-Absorption Cooling System for Simultaneous Power and Cooling Production
    Jimenez-Garcia, Jose C.
    Moreno-Cruz, Isaias
    Rivera, Wilfrido
    PROCESSES, 2024, 12 (03)
  • [30] Performance assessment and multi-objective optimization of an organic Rankine cycles and vapor compression cycle based combined cooling, heating, and power system
    Nasir, Muhammad Tauseef
    Ekwonu, Michael Chukwuemeka
    Esfahani, Javad Abolfazli
    Kim, Kyung Chun
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 47