Fractional vortex ultrashort pulsed beams with modulating vortex strength

被引:12
|
作者
Luo, Mengdi [1 ]
Wang, Zhaoying [1 ]
机构
[1] Zhejiang Univ, Dept Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Zhejiang, Peoples R China
来源
OPTICS EXPRESS | 2019年 / 27卷 / 25期
关键词
ORBITAL ANGULAR-MOMENTUM; OPTICAL VORTICES; LASER-BEAMS; LIGHT-BEAMS; FEW-CYCLE; GENERATION; ROTATION;
D O I
10.1364/OE.27.036259
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In most papers about the fractional vortex continuous beams (FVCBs), the relationship between the total vortex strength S a and the propagation distance is not analyzed since the vortex structure is not stable in the near field. In this paper, we theoretically study the fractional vortex ultrashort pulsed beams (FVUPBs) possessing non-integer topological charges a at arbitrary plane and find that the vortex structure is propagation-distance-dependent. Both the intensity and phase distributions are calculated to analyze the vortex structure. To evaluate the propagation properties of FVUPBs, we focus on the total vortex strength (TVS) of FVUPBs to investigate the number of vortex, and demonstrate that the birth of a vortex is at a = in + e, where m is an integer, e is a changing fraction depending on the pulse durations, peak wavelengths and propagation distances. Furthermore, we discover that the FVUPBs carry decreasing TVS along the propagation axis in free space. This special vortex structure for FVUPBs appears due to the mixture weight of vortex pulsed beam with different integer topological charges (TCs) n. However, the total orbital angular momentum is invariant during propagation. The above phenomenon presented in our paper arc totally particular and intriguing compared with the FVCBs. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:36259 / 36268
页数:10
相关论文
共 50 条
  • [31] Pulsed amplification of 2 μm composite vortex beams (Conference Presentation)
    Miller, Keith
    Li, Yuan
    Li, Wenzhe
    Shori, Ramesh K.
    Johnson, Eric G.
    SOLID STATE LASERS XXVI: TECHNOLOGY AND DEVICES, 2017, 10082
  • [32] Spectrum superbroadening in self-focusing of pulsed vortex beams in air
    Vlasov, R. A.
    Volkov, V. M.
    Dedkov, D. Yu.
    QUANTUM ELECTRONICS, 2013, 43 (02) : 157 - 161
  • [33] Coherence vortex properties of partially coherent vortex beams
    Cheng Ke
    Zhang Hong-Run
    Lue Bai-Da
    ACTA PHYSICA SINICA, 2010, 59 (01) : 246 - 255
  • [34] Precise measurement of trapping and manipulation properties of focused fractional vortex beams
    Gao, Binjie
    Wen, Jisen
    Zhu, Guiyuan
    Ye, Linhua
    Wang, Li-Gang
    NANOSCALE, 2022, 14 (08) : 3123 - 3130
  • [35] Fractional Fourier transforms of vortex Hermite-cosh-Gaussian beams
    Halba, E. M. El
    Hricha, Z.
    Belafhal, A.
    RESULTS IN OPTICS, 2021, 5
  • [36] Correcting vortex splitting in higher order vortex beams
    Neo, Richard
    Tan, Shiaw Juen
    Zambrana-Puyalto, Xavier
    Leon-Saval, Sergio
    Bland-Hawthorn, Joss
    Molina-Terriza, Gabriel
    OPTICS EXPRESS, 2014, 22 (08): : 9920 - 9931
  • [37] Vortex structure of elegant Laguerre-Gaussian beams of fractional order
    Martinez-Castellanos, Israel
    Gutierrez-Vega, Julio C.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2013, 30 (11) : 2395 - 2400
  • [38] Diffraction Properties of Fractional-Order Vortex Beams in Far Field
    Liu Man
    Zhang Meina
    ACTA OPTICA SINICA, 2019, 39 (07)
  • [39] Diffractometry-based vortex beams fractional topological charge measurement
    Hosseini-Saber, S. M. A.
    Akhlaghi, Ehsan A.
    Saber, Ahad
    OPTICS LETTERS, 2020, 45 (13) : 3478 - 3481
  • [40] Fractional vortex lens
    Vyas, Sunil
    Singh, Rakesh Kumar
    Senthilkumaran, P.
    OPTICS AND LASER TECHNOLOGY, 2010, 42 (06): : 878 - 882