A contextual algorithm for AVHRR fire detection

被引:239
|
作者
Flasse, SP
Ceccato, P
机构
[1] Natural Resources Institute, Chatham Maritime, Kent, ME4 4TB, Central Avenue
关键词
D O I
10.1080/01431169608949018
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A contextual algorithm for fire detection with NOAA-AVHRR-LAC data was developed. Unlike 'traditional' fire detection algorithms (e.g., multichannel thresholds), the decision to record a fire is made by comparing a fire pixel with the pixels in its immediate neighbourhood. The algorithm is self-adaptive and therefore very consistent over large areas as well as through seasons. The algorithm appears to operate successfully in most areas of the world. This Letter presents the contextual approach and describes the algorithm.
引用
收藏
页码:419 / 424
页数:6
相关论文
共 50 条
  • [31] DEVELOPMENT OF A GENERIC MULTICHANNEL ALGORITHM FOR CLOUD DETECTION USING AVHRR DATA
    STOWE, LL
    CAREY, R
    MCCLAIN, EP
    PELLEGRINO, P
    GUTMAN, G
    MAJOR, E
    DAVIS, P
    KRUPA, S
    SYMPOSIUM ON THE ROLE OF CLOUDS IN ATMOSPHERIC CHEMISTRY AND GLOBAL CLIMATE, 1988, : 165 - 169
  • [32] Real-time AVHRR forest fire detection in Mexico (1998-2000)
    Galindo, I
    López-Pérez, P
    Evangelista-Salazar, M
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (01) : 9 - 22
  • [33] Application of the multifractal microcanonical formalism to the detection of fire plumes in NOAA-AVHRR data
    Yahia, H.
    Turiel, A.
    Chrysoulakis, N.
    Grazzini, J.
    Prastacos, P.
    Herlin, I.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (14) : 4189 - 4205
  • [34] Comparison of fire detection in savannas using AVHRR's channel 3 and TM images
    Pereira, AC
    Setzer, AW
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 1996, 17 (10) : 1925 - 1937
  • [35] Real-time AVHRR forest fire detection in Mexico (1998-2000)
    Galindo, I.
    López-Pérez, P.
    Evangelista-Salazar, M.
    Int. J. Remote Sens., 1600, 1 (9-22):
  • [36] Combining AVHRR and ATSR satellite sensor data for operational boreal forest fire detection
    Kelhä, V
    Rauste, Y
    Häme, T
    Sephton, T
    Buongiorno, A
    Frauenberger, O
    Soini, K
    Venäläinen, A
    San Miguel-Ayanz, J
    Vainio, T
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (08) : 1691 - 1708
  • [37] Fire mapping in a northern boreal forest: assessing AVHRR/NDVI methods of change detection
    Remmel, TK
    Perera, AH
    FOREST ECOLOGY AND MANAGEMENT, 2001, 152 (1-3) : 119 - 129
  • [38] A new approach for more effective fire detection method using NOAA AVHRR images
    Kalpoma, KA
    Haramoto, Y
    Kudoh, J
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 5714 - 5716
  • [39] YOLO-Fire: A Fire Detection Algorithm Based on YOLO
    Xu, Bo
    Hua, Fengyou
    Yang, Qun
    Wang, Tao
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT III, ICIC 2024, 2024, 14864 : 142 - 154
  • [40] Comparative analysis of daytime fire detection algorithms using AVHRR data for the 1995 fire season in Canada: perspective for MODIS
    Ichoku, C
    Kaufman, YJ
    Giglio, L
    Li, Z
    Fraser, RH
    Jin, JZ
    Park, WM
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2003, 24 (08) : 1669 - 1690