Light rings of five-dimensional geometries

被引:16
|
作者
Bianchi, M. [1 ,3 ]
Consoli, D. [2 ]
Grillo, A. [1 ,3 ]
Morales, J. F. [3 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Fis, Via Ric Sci, I-00133 Rome, Italy
[2] Univ Wien, Dept Phys, Vienna, Austria
[3] INFN, Sez Roma Tor Vergata, Via Ric Sci, I-00133 Rome, Italy
关键词
Black Holes; Black Holes in String Theory; Spacetime Singularities; Supergravity Models; ROTATING BLACK-HOLES; FUZZBALL PROPOSAL; STABILITY;
D O I
10.1007/JHEP03(2021)210
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study massless geodesics near the photon-spheres of a large family of solutions of Einstein-Maxwell theory in five dimensions, including BHs, naked singularities and smooth horizon-less JMaRT geometries obtained as six-dimensional uplifts of the five-dimensional solution. We find that a light ring of unstable photon orbits surrounding the mass center is always present, independently of the existence of a horizon or singularity. We compute the Lyapunov exponent, characterizing the chaotic behaviour of geodesics near the 'photon-sphere' and the time decay of ring-down modes dominating the response of the geometry to perturbations at late times. We show that, for geometries free of naked singularities, the Lyapunov exponent is always bounded by its value for a Schwarzschild BH of the same mass.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Phases of five-dimensional black holes
    Elvang, Henriette
    Emparan, Roberto
    Figueras, Pau
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (05):
  • [42] Voronoi conjecture for five-dimensional parallelohedra
    Garber, Alexey
    INVENTIONES MATHEMATICAE, 2025, : 587 - 631
  • [43] Calculation of the metric in the five-dimensional spacetime
    Shao Liang
    Li Miao
    Qin Zheng-Hui
    Han Jin-Zhu
    Shao Dan
    ACTA PHYSICA SINICA, 2010, 59 (06) : 3700 - 3703
  • [44] START in a Five-Dimensional Conformal Domain
    Arkadiusz Jadczyk
    Advances in Applied Clifford Algebras, 2012, 22 : 689 - 701
  • [45] Isospectral metrics on five-dimensional spheres
    Schueth, D
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2001, 58 (01) : 87 - 111
  • [46] Klein, Einstein, and five-dimensional unification
    Halpern, Paul
    PHYSICS IN PERSPECTIVE, 2007, 9 (04) : 390 - 405
  • [47] Spinor calculus on five-dimensional spacetimes
    Gomez-Lobo, Alfonso Garcia-Parrado
    Martin-Garcia, Jose M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (12)
  • [48] Five-dimensional CFTs from the ε-expansion
    De Cesare, Fabiana
    Di Pietro, Lorenzo
    Serone, Marco
    PHYSICAL REVIEW D, 2021, 104 (10)
  • [49] Null Geodesics in Five-Dimensional Manifolds
    Sanjeev S. Seahra
    Paul S. Wesson
    General Relativity and Gravitation, 2001, 33 : 1731 - 1752
  • [50] Five-dimensional cosmological scaling solution
    Chang, BR
    Liu, HY
    Liu, HY
    Xu, LX
    MODERN PHYSICS LETTERS A, 2005, 20 (12) : 923 - 928