Quark matter description in a Tsallis entropy approach

被引:8
|
作者
Barboza Mendoza, Carolina [1 ]
Herrera Corral, G. [1 ]
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Dept Fis, Apartado Postal 14 740, Mexico City 07360, DF, Mexico
来源
EUROPEAN PHYSICAL JOURNAL A | 2019年 / 55卷 / 09期
关键词
NUCLEAR-EQUATION;
D O I
10.1140/epja/i2019-12834-y
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
A non-additive entropy is used to describe quark matter. We consider a non-extensive thermodynamic system in the framework of the MIT bag model of hadrons, in order to consider the correlation between quarks and gluons due to strong interactions. The non-additive entropy of the system describes quarks and gluons as two probabilistically independent subsystems. We analyze the phase diagram in terms of the correlation parameter q that enters the sum of entropies in the Tsallis prescription. For the case of non-zero chemical potentials it can be shown that the systems with q <= q(max) may be associated with the weakly coupled systems while those with q > q(max) are more correlated. Furthermore, we find that the critical temperature for the hadron increases as the correlation between quarks and gluons increases, according to the expectations.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Bound for entropy and viscosity ratio of strange quark matter
    Bagchi, Manjari
    Dey, Jishnu
    Dey, Mira
    Gangopadhyay, Taparati
    Laha, Sibasish
    Ray, Subharthi
    Sinha, Monika
    PHYSICS LETTERS B, 2008, 666 (02) : 145 - 149
  • [22] Is the Tsallis entropy stable?
    Lutsko, J. F.
    Boon, J. P.
    Grosfils, P.
    EPL, 2009, 86 (04)
  • [23] On the choice of the ridge parameter: a generalized maximum Tsallis entropy approach
    Sanei Tabass, M.
    Mohtashami Borzadaran, G. R.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (06) : 2595 - 2604
  • [24] A rooted tree whose lower bound of average description length is given by Tsallis entropy
    Suyari, Hiroki
    COMPLEXITY, METASTABILITY AND NONEXTENSIVITY, 2007, 965 : 80 - 83
  • [25] Property of Tsallis entropy and principle of entropy increase
    Jiulin, Du
    BULLETIN OF THE ASTRONOMICAL SOCIETY OF INDIA, 2007, 35 (04): : 691 - 696
  • [26] A Recognition Approach of 3-D Objects based on the Tsallis Entropy
    Wang Ping
    Wang Wei
    Gao Ying-hui
    Li Shi-fei
    PROCEEDINGS OF INTERNATIONAL CONFERENCE ON COMPUTER VISION IN REMOTE SENSING, 2012, : 242 - 245
  • [27] An Information-Theoretic Approach to System Identification with Applying Tsallis Entropy
    Chernyshov, K. R.
    Jharko, E. Ph.
    IFAC PAPERSONLINE, 2018, 51 (06): : 24 - 29
  • [28] The Tsallis entropy and the Shannon entropy of a universal probability
    Tadaki, Kohtaro
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 2111 - 2115
  • [29] Analysis of the GRNs Inference by Using Tsallis Entropy and a Feature Selection Approach
    Lopes, Fabricio M.
    de Oliveira, Evaldo A.
    Cesar-, Roberto M., Jr.
    PROGRESS IN PATTERN RECOGNITION, IMAGE ANALYSIS, COMPUTER VISION, AND APPLICATIONS, PROCEEDINGS, 2009, 5856 : 473 - 480
  • [30] Tsallis Entropy for Geometry Simplification
    Castello, Pascual
    Gonzalez, Carlos
    Chover, Miguel
    Sbert, Mateu
    Feixas, Miquel
    ENTROPY, 2011, 13 (10) : 1805 - 1828