Prediction of the colorimetric parameters and mass loss of heat-treated bamboo: Comparison of multiple linear regression and artificial neural network method

被引:9
|
作者
Gurgen, Aysenur [1 ]
Topaloglu, Elif [2 ]
Ustaomer, Derya [1 ]
Yildiz, Sibel [1 ]
Ay, Nurgul [1 ]
机构
[1] Karadeniz Tech Univ, Fac Forest, Forest Ind Engn, TR-61080 Trabzon, Turkey
[2] Giresun Univ, Tech Sci Vocat Sch, Architecture & Urban Planning Dept, Giresun, Turkey
来源
COLOR RESEARCH AND APPLICATION | 2019年 / 44卷 / 05期
关键词
artificial neural network; bamboo; colorimetric parameter; mass loss; multiple linear regressions; THERMAL MODIFICATION; MECHANICAL-PROPERTIES; CHEMICAL-PROPERTIES; COLOR; SURFACE; OIL;
D O I
10.1002/col.22393
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In this study, the colorimetric parameters (L*, a*, b*) and mass loss of heat-treated bamboo were investigated, and the obtained results were modeled by using two methods: multiple linear regression (MLR) and artificial neural network (ANN). First, bamboo samples were exposed to heat treatment at different temperatures (110 degrees C, 140 degrees C, 170 degrees C, and 200 degrees C) and durations (15, 30, 45, 60, 75, 90, and 115 minutes) in a laboratory oven. Then, the colorimetric parameters (L*, a*, b*) and mass loss of each sample were measured after each period of heat treatment. All data were modeled by using two methods separately for each parameter and the performances of these proposed methods were compared. It was found that color change and mass loss increased with increasing temperature and duration of heat treatment. Mean absolute percentage error (MAPE) values of all obtained MLR ranged from 0.64% to 10.63%, while the all MAPE values of ANN were found to be lower than 1.5%. Based on these results, it can be said that MLR and ANN could be used to evaluate the changes on the selected properties of heat-treated bamboo samples. On the other hand, it should be emphasized that the ANN gave more accurate results than the MLR method because of its learning capability.
引用
收藏
页码:824 / 833
页数:10
相关论文
共 50 条
  • [31] COMPARISON BETWEEN ARTIFICIAL NEURAL NETWORK AND MULTIPLE REGRESSION FOR THE PREDICTION OF SUPERFICIAL ROUGHNESS IN DRY TURNING
    Morales-Tamayo, Yoandrys
    Zamora-Hernandez, Yusimit
    Vasquez-Carrera, Paco
    Porras-Vasconez, Mario
    Barzaga-Quesada, Joao
    Lopez-Bustamante, Ringo
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2018, (19): : 79 - 88
  • [32] Egg hatchability prediction by multiple linear regression and artificial neural networks
    Bolzan, A. C.
    Machado, R. A. F.
    Piaia, J. C. Z.
    BRAZILIAN JOURNAL OF POULTRY SCIENCE, 2008, 10 (02) : 97 - 102
  • [33] Comparison of neural network and multiple linear regression as dissolution predictors
    Sathe, PM
    Venitz, J
    DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY, 2003, 29 (03) : 349 - 355
  • [34] PREDICTION OF PARTICULATE MATTER CONTENT PM10 WITH ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION
    Stoyanov, N.
    Pandelova, A.
    Dzhudzhev, B.
    Georgiev, T. Z.
    Kalapchiiska, J.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2023, 21 (06): : 5643 - 5655
  • [35] PREDICTION OF BLENDED YARN EVENNESS AND TENSILE PROPERTIES BY USING ARTIFICIAL NEURAL NETWORK AND MULTIPLE LINEAR REGRESSION
    Malik, Samander Ali
    Farooq, Assad
    Gereke, Thomas
    Cherif, Chokri
    AUTEX RESEARCH JOURNAL, 2016, 16 (02) : 43 - 50
  • [37] Comparison of Artificial Neural Network and regression models for sediment loss prediction from Banha watershed in India
    Sarangi, A
    Bhattacharya, AK
    AGRICULTURAL WATER MANAGEMENT, 2005, 78 (03) : 195 - 208
  • [38] Multiple Regression and Artificial Neural Network for the Prediction of Crop Pest Risks
    Yan, Yingwei
    Feng, Chen-Chieh
    Wan, Maffee Peng-Hui
    Chang, Klarissa Ting-Ting
    INFORMATION SYSTEMS FOR CRISIS RESPONSE AND MANAGEMENT IN MEDITERRANEAN COUNTRIES, ISCRAM-MED 2015, 2015, 233 : 73 - 84
  • [39] Comparison of Artificial Neural Network, Linear Regression and Support Vector Machine for Prediction of Solar PV Power
    Kuriakose, Ans Maria
    Kariyalil, Denny Philip
    Augusthy, Marymol
    Sarath, S.
    Jacob, Joffie
    Antony, Neenu Rose
    2020 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2020, : 53 - 58
  • [40] Comparison of Regression and Artificial Neural Network Models for Surface Roughness Prediction with the Cutting Parameters in CNC Turning
    Nalbant, Muammer
    Gokkaya, Hasan
    Toktas, Ihsan
    MODELLING AND SIMULATION IN ENGINEERING, 2007, 2007