Convolutional Neural Network Pruning: A Survey

被引:0
|
作者
Xu, Sheng [1 ]
Huang, Anran [1 ]
Chen, Lei [1 ,2 ]
Zhang, Baochang [1 ]
机构
[1] Beihang Univ, Sch Automat Sci & Eletr Engn, Beijing 100191, Peoples R China
[2] Beijing Adv Innovat Ctr Big Data & Brain Comp, State Key Lab Software Dev Environm, Beijing 100191, Peoples R China
关键词
convolutional neural networks; machine intelligence; pruning method; training strategy; estimation criterion; SHRINKAGE;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep convolutional neural networks have enabled remarkable progress over the last years on a variety of visual tasks, such as image recognition, speech recognition, and machine translation. These tasks contribute many to machine intelligence. However, developments of deep convolutional neural networks to a machine terminal remains challenging due to massive number of parameters and float operations that a typical model contains. Therefore, there is growing interest in convolutional neural network pruning. Existing work in this field of research can be categorized according to three dimensions: pruning method, training strategy, estimation criterion.
引用
收藏
页码:7458 / 7463
页数:6
相关论文
共 50 条
  • [21] Pruning and quantization for deep neural network acceleration: A survey
    Liang, Tailin
    Glossner, John
    Wang, Lei
    Shi, Shaobo
    Zhang, Xiaotong
    NEUROCOMPUTING, 2021, 461 : 370 - 403
  • [22] CONVOLUTIONAL NEURAL NETWORK PRUNING TO ACCELERATE MEMBRANE SEGMENTATION IN ELECTRON MICROSCOPY
    Roels, Joris
    De Vylder, Jonas
    Aelterman, Jan
    Saeys, Yvan
    Philips, Wilfried
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 633 - 637
  • [23] Accelerating Convolutional Neural Network Pruning via Spatial Aura Entropy
    Musat, Bogdan
    Andonie, Razvan
    2023 27TH INTERNATIONAL CONFERENCE INFORMATION VISUALISATION, IV, 2023, : 286 - 291
  • [24] Empirical evaluation of filter pruning methods for acceleration of convolutional neural network
    Dheeraj Kumar
    Mayuri A. Mehta
    Vivek C. Joshi
    Rachana S. Oza
    Ketan Kotecha
    Jerry Chun-Wei Lin
    Multimedia Tools and Applications, 2024, 83 : 54699 - 54727
  • [25] EDP: An Efficient Decomposition and Pruning Scheme for Convolutional Neural Network Compression
    Ruan, Xiaofeng
    Liu, Yufan
    Yuan, Chunfeng
    Li, Bing
    Hu, Weiming
    Li, Yangxi
    Maybank, Stephen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (10) : 4499 - 4513
  • [26] Convolutional Neural Network Compression via Dynamic Parameter Rank Pruning
    Sharma, Manish
    Heard, Jamison
    Saber, Eli
    Markopoulos, Panagiotis
    IEEE ACCESS, 2025, 13 : 18441 - 18456
  • [27] Adaptive pruning threshold based convolutional neural network for object detection
    Guo, Zhendong
    Li, Xiaohong
    Zhang, Kai
    Guo, Xiaoyong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 43 (06) : 7821 - 7831
  • [28] An Effective Metaheuristic-based Pruning Method for Convolutional Neural Network
    Tsai, Kai-Hsun
    Tsai, Chun-Wei
    Chiang, Ming-Chao
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 679 - 682
  • [29] Performance Aware Convolutional Neural Network Channel Pruning for Embedded GPUs
    Radu, Valentin
    Kaszyk, Kuba
    Wen, Yuan
    Turner, Jack
    Cano, Jose
    Crowley, Elliot J.
    Franke, Bjoern
    Storkey, Amos
    O'Boyle, Michael
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL SYMPOSIUM ON WORKLOAD CHARACTERIZATION (IISWC 2019), 2019, : 24 - 34
  • [30] Empirical evaluation of filter pruning methods for acceleration of convolutional neural network
    Kumar, Dheeraj
    Mehta, Mayuri A.
    Joshi, Vivek C.
    Oza, Rachana S.
    Kotecha, Ketan
    Lin, Jerry Chun-Wei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 54699 - 54727