Asymptotic normality and mean consistency for the weighted estimator in nonparametric regression models

被引:2
|
作者
Wu, Yi [1 ]
Wang, Xuejun [1 ]
Sung, Soo Hak [2 ]
机构
[1] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[2] Pai Chai Univ, Dept Appl Math, Taejon 302735, South Korea
基金
中国国家自然科学基金;
关键词
Asymptotic normality; Mean consistency; Linearly negative quadrant dependent random variables; Nonparametric regression model; Weighted estimator; FIXED-DESIGN REGRESSION; RANDOM-VARIABLES; COMPLETE CONVERGENCE; SUMS; THEOREM;
D O I
10.1016/j.jkss.2019.01.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we mainly study the asymptotic properties of weighted estimator for the nonparametric regression model based on linearly negative quadrant dependent (LNQD, for short) errors. We obtain the rate of uniformly asymptotic normality of the weighted estimator which is nearly O(n(-1/4)) when the moment condition is appropriate. The results generalize the corresponding ones of Yang (2003) from NA samples to LNQD samples and improve or extend the corresponding one of Li et al. (2012) for LNQD samples. Moreover, we obtain some results on mean consistency, uniformly mean consistency, and the rate of mean consistency for the weighted estimator. Finally we carry out some simulations to verify the validity of our results. (C) 2019 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:463 / 479
页数:17
相关论文
共 50 条
  • [22] Asymptotic normality estimators of maximum likelihood for nonparametric multivariate regression models
    Rodriguez-Poo, J
    Sperlich, S
    Vieu, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (01): : 61 - 64
  • [23] THE MEAN CONSISTENCY OF THE WEIGHTED ESTIMATOR IN THE FIXED DESIGN REGRESSION MODELS BASED ON m-END ERRORS
    Xu, Weifeng
    Wu, Yi
    Zhang, Rui
    Jiang, Huiling
    Wang, Xuejun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2018, 12 (03): : 765 - 775
  • [24] Consistency and Asymptotic Normality of the Maximum Likelihood Estimator in GaGLM
    Wang, Benchao
    Qin, Pan
    Gu, Hong
    IEEE ACCESS, 2022, 10 : 14386 - 14396
  • [25] A BIVARIATE HISTOGRAM DENSITY ESTIMATOR - CONSISTENCY AND ASYMPTOTIC NORMALITY
    KIM, BK
    VANRYZIN, J
    STATISTICS & PROBABILITY LETTERS, 1985, 3 (03) : 167 - 173
  • [26] Consistency for the least squares estimator in nonparametric regression
    VandeGeer, S
    Wegkamp, M
    ANNALS OF STATISTICS, 1996, 24 (06): : 2513 - 2523
  • [27] Asymptotic Normality of the Whittle Estimator in Linear Regression Models with Long Memory Errors
    Hira L. Koul
    Donatas Surgailis
    Statistical Inference for Stochastic Processes, 2000, 3 (1-2) : 129 - 147
  • [28] CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE MAXIMUM-LIKELIHOOD ESTIMATOR IN GENERALIZED LINEAR-MODELS
    FAHRMEIR, L
    KAUFMANN, H
    ANNALS OF STATISTICS, 1985, 13 (01): : 342 - 368
  • [29] Asymptotic normality of robust nonparametric estimator for functional dependent data
    Attouch, Mohammed
    Laksaci, Ali
    Ould-Said, Elias
    FUNCTIONAL AND OPERATORIAL STATISTICS, 2008, : 31 - +
  • [30] Asymptotic normality of a generalized maximum mean discrepancy estimator
    Balogoun, Armando Sosthene Kali
    Nkiet, Guy Martial
    Ogouyandjou, Carlos
    STATISTICS & PROBABILITY LETTERS, 2021, 169