CoSe@N-Doped Carbon Nanotubes as a Potassium-Ion Battery Anode with High Initial Coulombic Efficiency and Superior Capacity Retention

被引:115
|
作者
Liu, Yanzhen [1 ]
Deng, Qiang [1 ]
Li, Youpeng [1 ]
Li, Yijuan [1 ]
Zhong, Wentao [1 ]
Hu, Junhua [2 ]
Ji, Xiaohong [3 ]
Yang, Chenghao [1 ]
Lin, Zhang [1 ]
Huang, Kevin [4 ]
机构
[1] South China Univ Technol, Sch Environm & Energy, New Energy Res Inst, Guangzhou Key Lab Surface Chem Energy Mat, Guangzhou 510006, Peoples R China
[2] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[3] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510641, Peoples R China
[4] Univ South Carolina, Dept Mech Engn, Columbia, SC 29205 USA
基金
中国国家自然科学基金;
关键词
potassium-ion batteries; anode; Co selenide; surface polymerization; electrochemical performance; METAL-ORGANIC FRAMEWORKS; PERFORMANCE LITHIUM-ION; REDUCED GRAPHENE OXIDE; POROUS CARBON; NANOSHEETS; SHELL;
D O I
10.1021/acsnano.0c08094
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Potassium-ion batteries (KIBs) have gained significant interest in recent years from the battery research community because potassium is an earth-abundant and redox-active metal, thus having the potential to replace lithium-ion batteries for sustainable energy storage. However, the current development of KIBs is critically challenged by the lack of competitive electrode materials that can reversibly store large ink amounts of K+ and electrolyte systems that are compatible with the electrode materials. Here, we report that cobalt monochalcogenide (CoSe) nanoparticles confined in N-doped carbon nanotubes (CoSe@NCNTs) can be used as a K+-storing electrode. The CoSe@NCNT composite exhibits a high initial Columbic efficiency (95%), decent capacity (435 mAh g(-1) at 0.1 A g(-1)), and stability (282 mAh g(-1) 2.0 A g(-1) after 500 cycles) in a 1 M KPF6-DME electrolyte with K as the anode over the voltage range from 0.01 to 3.0 V. A full KIB cell consisting of this anode and a Prussian blue cathode also shows excellent electrochemical performance (228 mAh g(-1) at 0.5 A g(-1) after 200 cycles). We show that the NCNT shell is effective not only in providing high electronic conductivity for fast charge transfer but also in accommodating the volume changes during cycling. We also provide experimental and theoretical evidence that KPF6 in the electrolyte plays a catalytic role in promoting the formation of a polymer-like film on the CoSe surface during the initial activation process, and this amorphous film is of critical importance in preventing the dissolution of polyselenide intermediates into the electrolyte, stabilizing the Co-0/K2Se interface, and realizing the reversibility of Co-0/K2Se conversion.
引用
收藏
页码:1121 / 1132
页数:12
相关论文
共 50 条
  • [41] Embedding Antimony Nanoparticles into a Nitrogen-Doped Porous Carbon Matrix for High-Performance Potassium-Ion Battery Anode
    Jiang, Rong
    Dai, Longjun
    Xie, Yuan
    Huang, Junyuan
    Li, Qian
    Wen, Jia
    Ren, Yang
    Liu, Zhu
    He, Yao
    Zhou, Xiaowei
    LANGMUIR, 2025, 41 (06) : 4221 - 4232
  • [42] Low-Defect and Low-Porosity Hard Carbon with High Coulombic Efficiency and High Capacity for Practical Sodium Ion Battery Anode
    Xiao, Lifen
    Lu, Haiyan
    Fang, Yongjin
    Sushko, Maria L.
    Cao, Yuliang
    Ai, Xinping
    Yang, Hanxi
    Liu, Jun
    ADVANCED ENERGY MATERIALS, 2018, 8 (20)
  • [43] Nitrogen-doped mesoporous carbon as an anode material for high performance potassium-ion batteries
    Qiu, Zhenping
    Zhao, KaiXiang
    Liu, Jiaming
    Xia, Shubiao
    ELECTROCHIMICA ACTA, 2020, 340
  • [44] Constructing hollow CoSe2/SnSe2 heterostructures covered with N-doped carbon shell for high-efficiency potassium-ion storage
    Jo, Du Yeol
    Park, Seung-Keun
    APPLIED SURFACE SCIENCE, 2022, 571
  • [45] Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries
    He, Hanna
    Sun, Dan
    Tang, Yougen
    Wang, Haiyan
    Shao, Minhua
    ENERGY STORAGE MATERIALS, 2019, 23 : 233 - 251
  • [46] The creation of extra storage capacity in nitrogen-doped porous carbon as high-stable potassium-ion battery anodes
    Xu, Shikai
    Cai, Le
    Niu, Ping
    Li, Zhiqiang
    Wei, Lingzhi
    Yao, Ge
    Wang, Changlai
    Zheng, Fangcai
    Chen, Qianwang
    CARBON, 2021, 178 : 256 - 264
  • [47] CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage
    Yu, Qiyao
    Hu, Jun
    Qian, Chang
    Gao, Yunzhi
    Wang, Wei
    Yin, Geping
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (01) : 27 - 32
  • [48] CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage
    Qiyao Yu
    Jun Hu
    Chang Qian
    Yunzhi Gao
    Wei (Alex) Wang
    Geping Yin
    Journal of Solid State Electrochemistry, 2019, 23 : 27 - 32
  • [49] Sulfur/Nitrogen Co-Doped In-Plane Porous Carbon Nanosheets as Superior Anode of Potassium-Ion Batteries
    Li, Guilan
    Xu, Anding
    Zhong, Fulan
    Huang, Chuyun
    Sun, Hao
    Xu, Zhiguang
    Wu, Songping
    Yan, Yurong
    BATTERIES & SUPERCAPS, 2022, 5 (05)
  • [50] Rational design of porous Sn nanospheres/N-doped carbon nanofibers as an ultra-stable potassium-ion battery anode material
    Li, Chao
    Bi, An Tong
    Chen, Hong Li
    Pei, Ya Ru
    Zhao, Ming
    Yang, Chun Cheng
    Jiang, Qing
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (09) : 5740 - 5750