On group vertex magic graphs

被引:4
|
作者
Kamatchi, N. [1 ]
Paramasivam, K. [2 ]
Prajeesh, A. V. [2 ]
Sabeel, K. Muhammed [2 ]
Arumugam, S. [3 ]
机构
[1] Kamaraj Coll Engn & Technol, Dept Math, Virudunagar 625701, India
[2] Natl Inst Technol Calicut, Dept Math, Kozhikode 673601, India
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Anand Nagar 626126, Gujarat, India
关键词
A-vertex magic; Group vertex magic graph; Weight of a vertex; Tree;
D O I
10.1016/j.akcej.2019.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G=(V(G),E(G)) be a simple undirected graph and let A be an additive abelian group with identity 0. A mapping l:V(G)-> A\{0} is said to be a A-vertex magic labeling of G if there exists an element mu of A such that w(v)=Sigma u is an element of N(v)l(u)=mu for any vertex v of G, where N(v) is the open neighborhood of v. A graph G that admits such a labeling is called an A-vertex magic graph. If G is A-vertex magic graph for any nontrivial abelian group A, then G is called a group vertex magic graph. In this paper, we obtain a few necessary conditions for a graph to be group vertex magic. Further, when AZ2 circle plus Z2, we give a characterization of trees with diameter at most 4 which are A-vertex magic.
引用
收藏
页码:461 / 465
页数:5
相关论文
共 50 条
  • [21] Vertex-magic total labelings of even complete graphs
    Armstrong, Addie
    McQuillan, Dan
    DISCRETE MATHEMATICS, 2011, 311 (8-9) : 676 - 683
  • [22] Group Distance Magic and Antimagic Graphs
    S.CICHACZ
    D.FRONCEK
    K.SUGENG
    Sanming ZHOU
    Acta Mathematica Sinica,English Series, 2016, 32 (10) : 1159 - 1176
  • [23] Group distance magic and antimagic graphs
    Cichacz, S.
    Froncek, D.
    Sugeng, K.
    Zhou, Sanming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2016, 32 (10) : 1159 - 1176
  • [24] Group Distance Magic and Antimagic Graphs
    SCICHACZ
    DFRONCEK
    KSUGENG
    Sanming ZHOU
    ActaMathematicaSinica, 2016, 32 (10) : 1159 - 1176
  • [25] Group distance magic and antimagic graphs
    S. Cichacz
    D. Froncek
    K. Sugeng
    Sanming Zhou
    Acta Mathematica Sinica, English Series, 2016, 32 : 1159 - 1176
  • [26] On the products of group-magic graphs
    Low, Richard M.
    Lee, Sin-Min
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2006, 34 : 41 - 48
  • [27] Feedback Vertex Set in Alternating Group Graphs
    Wang, Jian
    Xu, Xirong
    Gao, Liqing
    Zhu, Dejun
    Yang, Yuansheng
    UTILITAS MATHEMATICA, 2017, 103 : 237 - 243
  • [28] On vertex-magic total labeling of some wheel related graphs
    Rahim, M. Tariq
    Tomescu, Ioan
    Slamin
    UTILITAS MATHEMATICA, 2007, 73 : 97 - 104
  • [29] All regular graphs of small odd order are vertex-magic
    Kimberley, J. S.
    MacDougall, J. A.
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2011, 51 : 175 - 199
  • [30] On Vertex Magic Total Labeling of Disjoint. Union of Sun Graphs
    Wang, Tao-Ming
    Zhang, Guang-Hui
    UTILITAS MATHEMATICA, 2017, 103 : 289 - 298