Generalized Morrey Spaces - Revisited

被引:7
|
作者
Akbulut, Ali [1 ]
Guliyev, Vagif Sabir [1 ,2 ]
Noi, Takahiro [3 ]
Sawano, Yoshihiro [3 ]
机构
[1] Ahi Evran Univ, Dept Math, Kirsehir, Turkey
[2] Inst Math & Mech, Baku, Azerbaijan
[3] Tokyo Metropolitan Univ, Dept Math & Informat Sci, 1-1 Minami Ohsawa, Hachioji, Tokyo 1920397, Japan
来源
关键词
generalized Morrey spaces; decomposition; maximal operators; FRACTIONAL MAXIMAL OPERATORS; SINGULAR INTEGRAL-OPERATORS; BESOV-MORREY; DECOMPOSITION; BOUNDEDNESS; EMBEDDINGS;
D O I
10.4171/ZAA/1577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized Morrey space M-p,M-phi(R-n) was defined by Mizuhara 1991 and Nakai in 1994. It is equipped with a parameter 0 < p < infinity and a function phi : R-n x (0, infinity) -> (0, infinity). Our experience shows that M-p,M-phi(R-n) is easy to handle when 1 < p < infinity. However, when 0 < p <= 1, the function space M-p,M-phi(R-n) is difficult to handle as many examples show. We propose a way to deal with M-p,M-phi(R-n) for 0 < p <= 1, in particular, to obtain some estimates of the Hardy-Littlewood maximal operator on these spaces. Especially, the vector-valued estimates obtained in the earlier papers are refined. The key tool is the weighted dual Hardy operator. Much is known on the weighted dual Hardy operator.
引用
收藏
页码:17 / 35
页数:19
相关论文
共 50 条
  • [41] Boundedness of multilinear operators on generalized Morrey spaces
    Xiao Yu
    Xiang-xing Tao
    Applied Mathematics-A Journal of Chinese Universities, 2014, 29 : 127 - 138
  • [42] A Note on Generalized Fractional Integral Operators on Generalized Morrey Spaces
    Yoshihiro Sawano
    Satoko Sugano
    Hitoshi Tanaka
    Boundary Value Problems, 2009
  • [43] Singular Integrals and Commutators in Generalized Morrey Spaces
    Lubomiea SOFTOVA
    Acta Mathematica Sinica(English Series), 2006, 22 (03) : 757 - 766
  • [44] Schrodinger type operators on generalized Morrey spaces
    Li, Pengtao
    Wan, Xin
    Zhang, Chuangyuan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [45] A Note on Generalized Fractional Integral Operators on Generalized Morrey Spaces
    Sawano, Yoshihiro
    Sugano, Satoko
    Tanaka, Hitoshi
    BOUNDARY VALUE PROBLEMS, 2009,
  • [46] GENERALIZED FRACTIONAL MAXIMAL OPERATOR ON GENERALIZED LOCAL MORREY SPACES
    Kucukaslan, A.
    Guliyev, V. S.
    Serbetci, A.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01): : 73 - 87
  • [47] Generalized Fractional Integral Operators on Generalized Local Morrey Spaces
    Guliyev, V. S.
    Ismayilova, A. F.
    Kucukaslan, A.
    Serbetci, A.
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [48] EMBEDDINGS OF WEIGHTED GENERALIZED MORREY SPACES INTO LEBESGUE SPACES ON FRACTAL SETS
    Samko, Natasha
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1203 - 1224
  • [49] Embeddings of local generalized Morrey spaces between weighted Lebesgue spaces
    Almeida, Alexandre
    Samko, Stefan
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 164 : 67 - 76
  • [50] SOME INEQUALITIES FOR GENERALIZED FRACTIONAL INTEGRAL OPERATORS ON GENERALIZED MORREY SPACES
    Sugano, Satoko
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (04): : 849 - 865