Dynamic evolution of a hydroxylated layer in ruthenium phosphide electrocatalysts for an alkaline hydrogen evolution reaction

被引:28
|
作者
Kim, Jae-Chan [1 ]
Lee, Chan Woo [2 ]
Kim, Dong-Wan [1 ]
机构
[1] Korea Univ, Sch Civil Environm & Architectural Engn, Seoul 02841, South Korea
[2] Kookmin Univ, Dept Chem, 77 Jeongneung Ro, Seoul 02707, South Korea
基金
新加坡国家研究基金会;
关键词
DENSITY-FUNCTIONAL THEORY; METAL PHOSPHIDE; PH; NITROGEN; OXIDATION; SUPERIOR; SURFACE; SITES;
D O I
10.1039/c9ta13476j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Alkaline water electrolysis represents one of the most promising technologies for the development of environment-friendly energy cycles. Ruthenium phosphide electrocatalysts are attractive candidates for this process, and they recently showed high electrocatalytic activity for the hydrogen evolution reaction (HER) in alkaline conditions, which is even higher than that in acidic conditions; however, the origin of their activity has not been addressed to date. Here, we demonstrate that hydroxylated Ru species reconstructed by HER in a basic electrolyte are the key active sites for alkaline HER based on an in-depth X-ray photoelectron spectroscopic study. Ru phosphides with a higher Ru/P ratio in their bulk composition possess a higher ratio of hydroxylated Ru on their surface region of several nanometers with less P sites exposed, which determines the HER activity in alkaline conditions. The Ru phosphide nanofiber electrocatalysts presented here enabled almost zero overpotentials for alkaline HER with stable performance for 320 h. This work provides a deeper understanding of the origin of high HER activity in alkaline conditions.
引用
收藏
页码:5655 / 5662
页数:8
相关论文
共 50 条
  • [31] Cobalt Phosphide Hollow Polyhedron as Efficient Bifunctional Electrocatalysts for the Evolution Reaction of Hydrogen and Oxygen
    Liu, Mengjia
    Li, Jinghong
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) : 2158 - 2165
  • [32] A review with transition-metal phosphide electrocatalysts in hydrogen evolution reaction: Doping perspective
    Jing, Changdi
    Hong, Lumin
    Li, Bo
    Wang, Yao
    Zhang, Fengming
    Huang, Hua bo
    Jiang, Qianqian
    Tang, Jianguo
    MOLECULAR CATALYSIS, 2024, 554
  • [33] Ferric phosphide carbon nanocomposites emerging as highly active electrocatalysts for the hydrogen evolution reaction
    Chaudhari, Nitin K.
    Yu, Peng
    Kim, Byeongyoon
    Lee, Kwangyeol
    Li, Jinghong
    DALTON TRANSACTIONS, 2018, 47 (45) : 16011 - 16018
  • [34] Polyoxometalate derived bimetallic phosphide electrocatalysts for high-efficiency hydrogen evolution reaction
    Zhao, Yunxiu
    Wen, Jinghong
    Li, Ping
    Xiang, Yang
    Li, Meiqi
    Wang, Suna
    Dou, Jianmin
    Li, Yunwu
    Ma, Huiyan
    Xu, Liqiang
    INORGANIC CHEMISTRY FRONTIERS, 2024, 11 (21): : 7512 - 7524
  • [35] Recent Progress on Ruthenium-Based Electrocatalysts towards the Hydrogen Evolution Reaction
    Li, Lulu
    Tian, Fenyang
    Qiu, Longyu
    Wu, Fengyu
    Yang, Weiwei
    Yu, Yongsheng
    CATALYSTS, 2023, 13 (12)
  • [36] MOF-Derived Ultrathin Cobalt Phosphide Nanosheets as Efficient Bifunctional Hydrogen Evolution Reaction and Oxygen Evolution Reaction Electrocatalysts
    Li, Hong
    Ke, Fei
    Zhu, Junfa
    NANOMATERIALS, 2018, 8 (02):
  • [37] Cerium-Doped Nickel Phosphide Nanosheet Arrays as Highly Efficient Electrocatalysts for the Hydrogen Evolution Reaction in Acidic and Alkaline Conditions
    Zhang, Heng
    Shan, Dongfang
    Liu, Yue
    Liu, Lili
    Shen, Guixin
    Peng, Shanlong
    Wang, Dongdong
    Wang, Xindong
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (09) : 10961 - 10972
  • [38] Nanostructured electrocatalysts for the hydrogen evolution reaction
    Schaak, Raymond E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 247
  • [39] Advanced Pt-based electrocatalysts for the hydrogen evolution reaction in alkaline medium
    Ma, Wei
    Zhang, Xueyuan
    Li, Wenya
    Jiao, Menggai
    Zhang, Lili
    Ma, Renzhi
    Zhou, Zhen
    NANOSCALE, 2023, 15 (28) : 11759 - 11776
  • [40] Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction
    Guoliang Gao
    Guangzhen Zhao
    Guang Zhu
    Bowen Sun
    Zixu Sun
    Shunli Li
    YaQian Lan
    Chinese Chemical Letters, 2025, 36 (01) : 205 - 229