A new euclidean division algorithm for residue number systems

被引:9
|
作者
Bajard, JC
Didier, LS
Muller, JM
机构
[1] Univ Provence, CML, Lab Informat Marseille, F-13453 Marseille, France
[2] CNRS, Lab Informat Parallelisme, F-69364 Lyon 07, France
来源
JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 1998年 / 19卷 / 02期
关键词
IEEE Computer Society; Digit Number; Modular Multiplication; Computer Arithmetic; Chinese Remainder Theorem;
D O I
10.1023/A:1008065819322
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a new algorithm and architecture for performing divisions in residue number systems (RNS). Our algorithm is suitable for RNS with large moduli, with the aim of manipulating very large integers on a parallel computer or a special-purpose architecture. The two basic features of our algorithm are the use of a high-radix division method, and the use of a floating-point arithmetic that should run in parallel with the modular arithmetic.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 50 条
  • [31] NEW FAULT TOLERANT TECHNIQUES FOR RESIDUE NUMBER-SYSTEMS
    ORTON, GA
    PEPPARD, LE
    TAVARES, SE
    IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (11) : 1453 - 1464
  • [32] A new base extension algorithm and VLSI implement for residue number system
    Ma, Shang
    Wang, Chen-Hao
    Hu, Jian-Hao
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2015, 44 (02): : 205 - 210
  • [33] Montgomery residue number systems
    Phillips, BJ
    ELECTRONICS LETTERS, 2001, 37 (21) : 1286 - 1287
  • [34] AN APPROXIMATE METHOD FOR COMPARING MODULAR NUMBERS AND ITS APPLICATION TO THE DIVISION OF NUMBERS IN RESIDUE NUMBER SYSTEMS
    Chervyakov, N. I.
    Babenko, M. G.
    Lyakhov, P. A.
    Lavrinenko, I. N.
    CYBERNETICS AND SYSTEMS ANALYSIS, 2014, 50 (06) : 977 - 984
  • [35] A high-speed division algorithm in residue number system using parity-checking technique
    Yang, JH
    Chang, CC
    Chen, CY
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (06) : 775 - 780
  • [36] Decoding Binary Quadratic Residue Codes Using the Euclidean Algorithm
    Shih, Pei-Yu
    Su, Wen-Ku
    Truong, Trieu-Kien
    Chang, Yaotsu
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2009, 25 (04) : 1283 - 1294
  • [37] A NEW VERSION OF EUCLIDEAN ALGORITHM
    BLANKINSHIP, WA
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (07): : 742 - &
  • [38] A DIVISION ALGORITHM WITHOUT NUMBER COMPARISON
    CHIOU, CW
    YANG, TC
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1994, 54 (1-2) : 53 - 56
  • [39] ON THE NUMBER OF DIVISIONS OF THE EUCLIDEAN ALGORITHM APPLIED TO GAUSSIAN INTEGERS
    ROLLETSCHEK, H
    JOURNAL OF SYMBOLIC COMPUTATION, 1986, 2 (03) : 261 - 291
  • [40] NEW ALGORITHMS FOR CORRECTING ERRORS IN REDUNDANT RESIDUE NUMBER-SYSTEMS
    KRISHNA, H
    LIN, KY
    TWENTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2: CONFERENCE RECORD, 1989, : 653 - 657