Long Non-Coding RNAs Involved in Progression of Non-Alcoholic Fatty Liver Disease to Steatohepatitis

被引:16
|
作者
Atanasovska, Biljana [1 ,2 ]
Rensen, Sander S. [3 ,4 ]
Marsman, Glenn [1 ]
Shiri-Sverdlov, Ronit [5 ,6 ,7 ]
Withoff, Sebo [2 ]
Kuipers, Folkert [1 ,8 ]
Wijmenga, Cisca [2 ]
van de Sluis, Bart [1 ]
Fu, Jingyuan [1 ,2 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Pediat, NL-9713 GZ Groningen, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Dept Genet, NL-9713 GZ Groningen, Netherlands
[3] Maastricht Univ, Dept Surg, NL-6229 HX Maastricht, Netherlands
[4] NUTRIM Sch Nutr & Translat Res Metab, NL-6229 HX Maastricht, Netherlands
[5] Univ Maastricht, Nutr & Toxicol Res NUTRIM Inst Maastricht, Dept Mol Genet, NL-6229 HX Maastricht, Netherlands
[6] Univ Maastricht, Nutr & Toxicol Res NUTRIM Inst Maastricht, Dept Mol Cell Biol, NL-6229 HX Maastricht, Netherlands
[7] Univ Maastricht, Nutr & Toxicol Res NUTRIM Inst Maastricht, Dept Populat Genet, NL-6229 HX Maastricht, Netherlands
[8] Univ Groningen, Univ Med Ctr Groningen, Dept Lab Med, NL-9713 GZ Groningen, Netherlands
基金
欧洲研究理事会;
关键词
non-alcoholic fatty liver disease; functional genomics; long non-coding RNAs; ENDOPLASMIC-RETICULUM STRESS; KAPPA-B; HEPATIC INFLAMMATION; MECHANISMS; PATHOPHYSIOLOGY; LIPOTOXICITY; PATHOGENESIS; RECEPTOR;
D O I
10.3390/cells10081883
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is characterized by different stages varying from benign fat accumulation to non-alcoholic steatohepatitis (NASH) that may progress to cirrhosis and liver cancer. In recent years, a regulatory role of long non-coding RNAs (lncRNAs) in NAFLD has emerged. Therefore, we aimed to characterize the still poorly understood lncRNA contribution to disease progression. Transcriptome analysis in 60 human liver samples with various degrees of NAFLD/NASH was combined with a functional genomics experiment in an in vitro model where we exposed HepG2 cells to free fatty acids (FFA) to induce steatosis, then stimulated them with tumor necrosis factor alpha (TNF alpha) to mimic inflammation. Bioinformatics analyses provided a functional prediction of novel lncRNAs. We further functionally characterized the involvement of one novel lncRNA in the nuclear-factor-kappa B (NF-kappa B) signaling pathway by its silencing in Hepatoma G2 (HepG2) cells. We identified 730 protein-coding genes and 18 lncRNAs that responded to FFA/TNF alpha and associated with human NASH phenotypes with consistent effect direction, with most being linked to inflammation. One novel intergenic lncRNA, designated lncTNF, was 20-fold up-regulated upon TNF alpha stimulation in HepG2 cells and positively correlated with lobular inflammation in human liver samples. Silencing lncTNF in HepG2 cells reduced NF-kappa B activity and suppressed expression of the NF-kappa B target genes A20 and NFKBIA. The lncTNF we identified in the NF-kappa B signaling pathway may represent a novel target for controlling liver inflammation.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] An update on non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in Asia
    Hsu, Ching-Sheng
    Kao, Jia-Horng
    EXPERT REVIEW OF GASTROENTEROLOGY & HEPATOLOGY, 2017, 11 (08) : 759 - 772
  • [22] Surgical Treatment of Non-Alcoholic Steatohepatitis and Non-Alcoholic Fatty Liver Disease
    Weiner, R. A.
    DIGESTIVE DISEASES, 2010, 28 (01) : 274 - 279
  • [23] Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice
    Guo, Jun
    Zhou, Yuan
    Cheng, Yafen
    Fang, Weiwei
    Hu, Gang
    Wei, Jie
    Lin, Yajun
    Man, Yong
    Guo, Lixin
    Sun, Mingxiao
    Cui, Qinghua
    Li, Jian
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2018, 45 (04) : 1487 - 1505
  • [24] Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis
    Pirola, Carlos J.
    Fernandez Gianotti, Tomas
    Castano, Gustavo O.
    Mallardi, Pablo
    San Martino, Julio
    Lopez Ledesma, Maria Mora Gonzalez
    Flichman, Diego
    Mirshahi, Faridodin
    Sanyal, Arun J.
    Sookoian, Silvia
    GUT, 2015, 64 (05) : 800 - 812
  • [25] Machine learning to predict progression of non-alcoholic fatty liver to non-alcoholic steatohepatitis or fibrosis
    Ghandian, Sina
    Thapa, Rahul
    Garikipati, Anurag
    Barnes, Gina
    Green-Saxena, Abigail
    Calvert, Jacob
    Mao, Qingqing
    Das, Ritankar
    JGH OPEN, 2022, 6 (03): : 196 - 204
  • [26] Management of Non-alcoholic Fatty Liver Disease and Steatohepatitis
    Le, Thuy-Anh
    Loomba, Rohit
    JOURNAL OF CLINICAL AND EXPERIMENTAL HEPATOLOGY, 2012, 2 (02) : 156 - 173
  • [27] Probiotics for non-alcoholic fatty liver disease and/or steatohepatitis
    Lirussi, F.
    Mastropaqua, E.
    Orando, S.
    Orlando, R.
    COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2007, (01):
  • [28] MicroRNAs involved in the progression of non-alcoholic fatty liver
    Nahum Lopez-Sanchez, Guillermo
    Montalvo-Jave, Eduardo
    Uribe Esquivel, Misael
    Carlos Chavez-Tapia, Norberto
    Nuno-Lambarri, Natalia
    JOURNAL OF HEPATOLOGY, 2020, 73 : S663 - S664
  • [29] Fatty Liver and Non-Alcoholic Steatohepatitis
    Saito, Takafumi
    Misawa, Keiko
    Kawata, Sumio
    INTERNAL MEDICINE, 2007, 46 (02) : 101 - 103
  • [30] An Animal Model for the Juvenile Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis
    Marin, Veronica
    Rosso, Natalia
    Dal Ben, Matteo
    Raseni, Alan
    Boschelle, Manuela
    Degrassi, Cristina
    Nemeckova, Ivana
    Nachtigal, Petr
    Avellini, Claudio
    Tiribelli, Claudio
    Gazzin, Silvia
    PLOS ONE, 2016, 11 (07):