Small UAS Online Audio DOA Estimation and Real-Time Identification Using Machine Learning

被引:2
|
作者
Kyritsis, Alexandros [1 ]
Makri, Rodoula [2 ]
Uzunoglu, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens NTUA, Sch Elect & Comp Engn, Microwaves & Fiber Opt Lab, Athens 10682, Greece
[2] Natl Tech Univ Athens NTUA, Inst Commun & Comp Syst ICCS, Athens 10682, Greece
基金
欧盟地平线“2020”;
关键词
UAS; microphone array; DOA estimation; identification; machine learning; PASSIVE ACOUSTIC TECHNIQUE; NARROW-BAND; TECHNOLOGIES; TRACKING; SYSTEM;
D O I
10.3390/s22228659
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The wide range of unmanned aerial system (UAS) applications has led to a substantial increase in their numbers, giving rise to a whole new area of systems aiming at detecting and/or mitigating their potentially unauthorized activities. The majority of these proposed solutions for countering the aforementioned actions (C-UAS) include radar/RF/EO/IR/acoustic sensors, usually working in coordination. This work introduces a small UAS (sUAS) acoustic detection system based on an array of microphones, easily deployable and with moderate cost. It continuously collects audio data and enables (a) the direction of arrival (DOA) estimation of the most prominent incoming acoustic signal by implementing a straightforward algorithmic process similar to triangulation and (b) identification, i.e., confirmation that the incoming acoustic signal actually emanates from a UAS, by exploiting sound spectrograms using machine-learning (ML) techniques. Extensive outdoor experimental sessions have validated this system's efficacy for reliable UAS detection at distances exceeding 70 m.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Machine learning enabled identification and real-time prediction of living plants? stress using terahertz waves
    Zahid, Adnan
    Dashtipour, Kia
    Abbas, Hasan T.
    Ben Mabrouk, Ismail
    Al-Hasan, Muath
    Ren, Aifeng
    Imran, Muhammad A.
    Alomainy, Akram
    Abbasi, Qammer H.
    DEFENCE TECHNOLOGY, 2022, 18 (08) : 1330 - 1339
  • [42] Real-Time SOC and SOH Estimation for EV Li-Ion Cell Using Online Parameters Identification
    Eddahech, Akram
    Briat, Olivier
    Vinassa, Jean-Michel
    2012 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2012, : 4501 - 4505
  • [43] Online Machine Learning for Energy-Aware Multicore Real-Time Embedded Systems
    Conradi Hoffmann, Jose Luis
    Frohlich, Antonio Augusto
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (02) : 493 - 505
  • [44] Real-Time Prediction of Solar Radiation based on Online Sequential Extreme Learning Machine
    Zhang, Jie
    Xu, Yuefan
    Xue, Jianqiang
    Xiao, Wendong
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 53 - 57
  • [45] A Novel Online Machine Learning Approach for Real-Time Condition Monitoring of Rotating Machines
    Mostafavi, Alireza
    Sadighi, Ali
    2021 9TH RSI INTERNATIONAL CONFERENCE ON ROBOTICS AND MECHATRONICS (ICROM), 2021, : 267 - 273
  • [46] Real time degradation identification of UAV using machine learning techniques
    Manukyan, Anush
    Olivares-Mendez, Miguel A.
    Voos, Holger
    Geist, Matthieu
    2017 INTERNATIONAL CONFERENCE ON UNMANNED AIRCRAFT SYSTEMS (ICUAS'17), 2017, : 1223 - 1230
  • [47] Real time terrain identification of autonomous robots using machine learning
    Nampoothiri, M. G. Harinarayanan
    Anand, P. S. Godwin
    Antony, Rahul
    INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2020, 4 (03) : 265 - 277
  • [48] Real time terrain identification of autonomous robots using machine learning
    M. G. Harinarayanan Nampoothiri
    P. S. Godwin Anand
    Rahul Antony
    International Journal of Intelligent Robotics and Applications, 2020, 4 : 265 - 277
  • [49] Real-time classification of EEG signals using Machine Learning deployment
    Chowdhuri, Swati
    Saha, Satadip
    Karmakar, Samadrita
    Chanda, Ankur
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2024, 34 (04):
  • [50] Real-time prediction of propulsion motor overheating using machine learning
    Hellton, K. H.
    Tveten, M.
    Stakkeland, M.
    Engebretsen, S.
    Haug, O.
    Aldrin, M.
    JOURNAL OF MARINE ENGINEERING AND TECHNOLOGY, 2022, 21 (06): : 334 - 342