A Survey on Deep Learning-Based Person Re-Identification Systems

被引:34
|
作者
Almasawa, Muna O. [1 ]
Elrefaei, Lamiaa A. [1 ,2 ]
Moria, Kawthar [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Comp Sci Dept, Jeddah 21589, Saudi Arabia
[2] Benha Univ, Fac Engn Shoubra, Elect Engn Dept, Cairo 11629, Egypt
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Deep learning; person re-identification; video surveillance; NEURAL-NETWORK; VIDEO; RECOGNITION; REPRESENTATIONS; MATCH; MODEL;
D O I
10.1109/ACCESS.2019.2957336
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Person re-identification systems (person Re-ID) have recently gained more attention between computer vision researchers. They are playing a key role in intelligent visual surveillance systems and have widespread applications like applications for public security. The person Re-ID systems can identify if a person has been seen by a non-overlapping camera over large camera network in an unconstrained environment. It is a challenging issue since a person appears differently under different camera views and faces many challenges such as pose variation, occlusion and illumination changes. Many methods had been introduced for generating handcrafted features aimed to handle the person Re-ID problem. In recent years, many studies have started to apply deep learning methods to enhance the person Re-ID performance due the deep learning yielded significant results in computer vision issues. Therefore, this paper is a survey of the recent studies that proposed to improve the person Re-ID systems using deep learning. The public datasets that are used for evaluating these systems are discussed. Finally, the paper addresses future directions and current issues that must be considered toward improving the person Re-ID systems.
引用
收藏
页码:175228 / 175247
页数:20
相关论文
共 50 条
  • [31] Deep-Person: Learning discriminative deep features for person Re-Identification
    Bai, Xiang
    Yang, Mingkun
    Huang, Tengteng
    Dou, Zhiyong
    Yu, Rui
    Xu, Yongchao
    PATTERN RECOGNITION, 2020, 98
  • [32] Deep Hybrid Similarity Learning for Person Re-Identification
    Zhu, Jianqing
    Zeng, Huanqiang
    Liao, Shengcai
    Lei, Zhen
    Cai, Canhui
    Zheng, Lixin
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (11) : 3183 - 3193
  • [33] Person Re-identification with Deep Features and Transfer Learning
    Wang, Shengke
    Wu, Shan
    Duan, Lianghua
    Yu, Changyin
    Sun, Yujuan
    Dong, Junyu
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND ENGINEERING (CSE) AND IEEE/IFIP INTERNATIONAL CONFERENCE ON EMBEDDED AND UBIQUITOUS COMPUTING (EUC), VOL 1, 2017, : 704 - 707
  • [34] Similarity learning with deep CRF for person re-identification
    Xiang, Jun
    Huang, Ziyuan
    Jiang, Xiaoping
    Hou, Jianhua
    PATTERN RECOGNITION, 2023, 135
  • [35] DEEP LEARNING PROTOTYPE DOMAINS FOR PERSON RE-IDENTIFICATION
    Schumann, Arne
    Gong, Shaogang
    Schuchert, Tobias
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 1767 - 1771
  • [36] Deep features for person re-identification on metric learning
    Wu, Wanyin
    Tao, Dapeng
    Li, Hao
    Yang, Zhao
    Cheng, Jun
    PATTERN RECOGNITION, 2021, 110
  • [37] Deep Cosine Metric Learning for Person Re-Identification
    Wojke, Nicolai
    Bewley, Alex
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 748 - 756
  • [38] Deep learning with particle filter for person re-identification
    Gwangmin Choe
    Chunhwa Choe
    Tianjiang Wang
    Hyoson So
    Cholman Nam
    Caihong Yuan
    Multimedia Tools and Applications, 2019, 78 : 6607 - 6636
  • [39] An Improved Deep Learning Architecture for Person Re-Identification
    Ahmed, Ejaz
    Jones, Michael
    Marks, Tim K.
    2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 3908 - 3916
  • [40] Deep learning with particle filter for person re-identification
    Choe, Gwangmin
    Choe, Chunhwa
    Wang, Tianjiang
    So, Hyoson
    Nam, Cholman
    Yuan, Caihong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (06) : 6607 - 6636