Image segmentation by networks of spiking neurons

被引:24
|
作者
Buhmann, JM [1 ]
Lange, T
Ramacher, U
机构
[1] Swiss Fed Inst Technol, CH-8092 Zurich, Switzerland
[2] Infineon Technol, D-81739 Munich, Germany
关键词
D O I
10.1162/0899766053491913
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A network of leaky integrate-and-fire (IAF) neurons is proposed to segment gray-scale images. The network architecture with local competition between neurons that encode segment assignments of image blocks is motivated by a histogram clustering approach to image segmentation. Lateral excitatory connections between neighboring image sites yield a local smoothing of segments. The mean firing rate of class membership neurons encodes the image segmentation. A weight modification scheme is proposed that estimates segment-specific prototypical histograms. The robustness properties of the network implementation make it amenable to an analog VLSI realization. Results on synthetic and real-world images demonstrate the effectiveness of the architecture.
引用
收藏
页码:1010 / 1031
页数:22
相关论文
共 50 条
  • [41] Short term memory in recurrent networks of spiking neurons
    Daucé E.
    Natural Computing, 2004, 3 (2) : 135 - 157
  • [42] Simulation of networks of spiking neurons:: A review of tools and strategies
    Brette, Romain
    Rudolph, Michelle
    Carnevale, Ted
    Hines, Michael
    Beeman, David
    Bower, James M.
    Diesmann, Markus
    Morrison, Abigail
    Goodman, Philip H.
    Harris, Frederick C., Jr.
    Zirpe, Milind
    Natschlaeger, Thomas
    Pecevski, Dejan
    Ermentrout, Bard
    Djurfeldt, Mikael
    Lansner, Anders
    Rochel, Olivier
    Vieville, Thierry
    Muller, Eilif
    Davison, Andrew P.
    El Boustani, Sami
    Destexhe, Alain
    JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2007, 23 (03) : 349 - 398
  • [43] Oscillations and Irregular Emission in Networks of Linear Spiking Neurons
    Gianluigi Mongillo
    Daniel J. Amit
    Journal of Computational Neuroscience, 2001, 11 : 249 - 261
  • [44] Simulating large and heterogeneous networks of spiking neurons with SpiNet
    Paulo Aguiar
    David Willshaw
    BMC Neuroscience, 8 (Suppl 2)
  • [45] Lower bounds for the computational power of networks of spiking neurons
    Maass, W
    NEURAL COMPUTATION, 1996, 8 (01) : 1 - 40
  • [46] Noise as a Resource for Computation and Learning in Networks of Spiking Neurons
    Maass, Wolfgang
    PROCEEDINGS OF THE IEEE, 2014, 102 (05) : 860 - 880
  • [47] Learning Temporally Encoded Patterns in Networks of Spiking Neurons
    Berthold Ruf
    Michael Schmitt
    Neural Processing Letters, 1997, 5 : 9 - 18
  • [48] A solution to the learning dilemma for recurrent networks of spiking neurons
    Guillaume Bellec
    Franz Scherr
    Anand Subramoney
    Elias Hajek
    Darjan Salaj
    Robert Legenstein
    Wolfgang Maass
    Nature Communications, 11
  • [49] Connectomic constraints on computation in feedforward networks of spiking neurons
    Venkatakrishnan Ramaswamy
    Arunava Banerjee
    Journal of Computational Neuroscience, 2014, 37 : 209 - 228
  • [50] Search for fMRI BOLD signals in networks of spiking neurons
    Amit, Daniel J.
    Romani, Sandro
    EUROPEAN JOURNAL OF NEUROSCIENCE, 2007, 25 (06) : 1882 - 1892