Hardy's inequality in several variables

被引:6
|
作者
Salem, S [1 ]
Khan, ZAA
Redheffer, R
机构
[1] Girls Coll Educ, Dept Math, Riyadh, Saudi Arabia
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
关键词
D O I
10.1006/jmaa.2000.6961
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend Hardy's discrete inequality to multiple series. For an r-fold series the correct constant is (c(p))(r), where c(p) is the constant in Hardy's original theorem. This constant is optimum and the inequality is strict unless all variables in it are 0. (C) 2000 Academic Press.
引用
收藏
页码:989 / 993
页数:5
相关论文
共 50 条
  • [11] ON THE NOTION OF HARDY FIELD IN SEVERAL-VARIABLES
    PASINI, L
    JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (04) : 1092 - 1093
  • [12] Note on a diophantine inequality in several variables
    Barton, JT
    Montgomery, HL
    Vaaler, JD
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (02) : 337 - 345
  • [13] A POLYNOMIAL INEQUALITY IN SEVERAL-VARIABLES
    GOETGHELUCK, P
    JOURNAL OF APPROXIMATION THEORY, 1984, 40 (02) : 161 - 172
  • [14] Note on the Carleman's inequality and Hardy's inequality
    Lue Zhongxue
    Gao Youcai
    Wei Yuxiang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) : 94 - 97
  • [15] A note on Hardy’s inequality
    Yu-Ming Chu
    Qian Xu
    Xiao-Ming Zhang
    Journal of Inequalities and Applications, 2014 (1)
  • [16] A note on Hardy's inequality
    Chu, Yu-Ming
    Xu, Qian
    Zhang, Xiao-Ming
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [17] Hardy's inequality for averages
    Jameson, G. J. O.
    MATHEMATICAL GAZETTE, 2023, 107 (568): : 25 - 34
  • [18] AN IMPROVED HARDY’S INEQUALITY
    Assal MILOUD
    Rahmouni ATEF
    Acta Mathematica Scientia, 2013, (05) : 1382 - 1386
  • [19] Hardy's inequality and curvature
    Balinsky, A.
    Evans, W. D.
    Lewis, R. T.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (02) : 648 - 666
  • [20] AN IMPROVED HARDY'S INEQUALITY
    Miloud, Assal
    Atef, Rahmouni
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (05) : 1382 - 1386