Knot solitons in a modified Ginzburg-Landau model

被引:0
|
作者
Jaeykkae, Juha [1 ]
Palmu, Joonatan [2 ]
机构
[1] Univ Leeds, Sch Math, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Turku, Dept Phys & Astron, FI-20014 Turku, Finland
来源
PHYSICAL REVIEW D | 2011年 / 83卷 / 10期
基金
芬兰科学院; 英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevD.83.105015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study a modified version of the Ginzburg-Landau model suggested by Ward and show that Hopfions exist in it as stable static solutions, for values of the Hopf invariant up to at least 7. We also find that their properties closely follow those of their counterparts in the Faddeev-Skyrme model. Finally, we lend support to Babaev's conjecture that longer core lengths yield more stable solitons and propose a possible mechanism for constructing Hopfions in pure Ginzburg-Landau model.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Memory driven Ginzburg-Landau model
    Trimper, S
    Zabrocki, K
    Schulz, M
    PHYSICAL REVIEW E, 2002, 66 (02):
  • [32] ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL
    CHEN, ZM
    HOFFMANN, KH
    LIANG, J
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) : 855 - 875
  • [33] Applying modified Ginzburg-Landau theory to nuclei
    Mohammadi, P.
    Dehghani, V.
    Mehmandoost-Khajeh-Dad, A. A.
    PHYSICAL REVIEW C, 2014, 90 (05):
  • [34] Fluctuations in the lattice Ginzburg-Landau model
    Ktitorov, SA
    Babaev, ES
    FLUCTUATION PHENOMENA IN HIGH TEMPERATURE SUPERCONDUCTORS, 1997, 32 : 301 - 309
  • [35] MICROSCOPIC DERIVATION OF THE GINZBURG-LANDAU MODEL
    Frank, R. L.
    Hainzl, C.
    Seiringer, R.
    Solovej, J. P.
    XVIITH INTERNATIONAL CONGRESS ON MATHEMATICAL PHYSICS, 2014, : 575 - 583
  • [36] Vortices in the Ginzburg-Landau model of superconductivity
    Serfaty, S
    EUROPEAN CONGRESS OF MATHEMATICS, 2005, : 837 - 850
  • [37] Introduction: Superconductivity and the Ginzburg-Landau model
    Rubinstein, J
    Sternberg, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (09)
  • [38] GINZBURG-LANDAU MODEL FOR A RANDOM MAGNET
    CREMER, S
    SIMANEK, E
    PHYSICAL REVIEW B, 1977, 16 (03): : 1270 - 1277
  • [39] AN ASYMPTOTIC ESTIMATE FOR THE GINZBURG-LANDAU MODEL
    STRUWE, M
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (07): : 677 - 680
  • [40] Dissipative solitons for generalizations of the cubic complex Ginzburg-Landau equation
    Carvalho, M., I
    Facao, M.
    PHYSICAL REVIEW E, 2019, 100 (03)