Inductive construction of rapidly convergent series representations for ζ(2n+1)

被引:2
|
作者
Srivastava, HM [1 ]
Tsumura, H
机构
[1] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3P4, Canada
[2] Tokyo Metropolitan Coll, Dept Management, Akishima, Tokyo 1968540, Japan
关键词
Riemann and Hurwitz Zeta functions; Bernoulli numbers; harmonic numbers; series representations; order estimates; Mellin transformation;
D O I
10.1080/0020716031000148494
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a natural number n. the authors, propose and develop a method of inductive construction of several (presumably new) rapidly convergent series representations for the values of the Riemann Zeta function (2n + 1). Under a certain assumption, the various series representations for (2n + 1), which are derived here by using this method. converge remarkably rapidly with their general terms having the order estimate: O(k(-2n-m).2(-2k)) (k --> infinity), where in is an arbitrary natural number. Numerical and symbolic computational aspects of some of the results presented here are also considered.
引用
收藏
页码:1161 / 1173
页数:13
相关论文
共 50 条
  • [41] A Generalized Cartan Decomposition for the Double Coset Space SU(2n+1)\SL(2n+1, C)/Sp(n, C)
    Sasaki, Atsumu
    JOURNAL OF MATHEMATICAL SCIENCES-THE UNIVERSITY OF TOKYO, 2010, 17 (02): : 201 - 215
  • [42] Efficient Modulo 2n+1 Multipliers
    Chen, Jian Wen
    Yao, Ruo He
    Wu, Wei Jing
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2011, 19 (12) : 2149 - 2157
  • [43] WIGNERS (2N+1) RULE IN MBPT
    KVASNICKA, V
    LAURINC, V
    BISKUPIC, S
    MOLECULAR PHYSICS, 1980, 39 (01) : 143 - 161
  • [44] On Modulo 2n+1 Adder Design
    Vergos, Haridimos T.
    Dimitrakopoulos, Giorgos
    IEEE TRANSACTIONS ON COMPUTERS, 2012, 61 (02) : 173 - 186
  • [45] Algorithm for modulo (2n+1) multiplication
    Sousa, LA
    ELECTRONICS LETTERS, 2003, 39 (09) : 752 - 754
  • [46] A New RNS Scaler for {2n-1, 2n, 2n+1}
    Low, Jeremy Yung Shern
    Chang, Chip Hong
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1431 - 1434
  • [47] Efficient reverse converters for four-moduli sets {2n-1, 2n, 2n+1, 2n+1-1} and {2n-1, 2n, 2n+1, 2n-1-1}
    Cao, B
    Srikanthan, T
    Chang, CH
    IEE PROCEEDINGS-COMPUTERS AND DIGITAL TECHNIQUES, 2005, 152 (05): : 687 - 696
  • [48] Shifter circuits for {2n+1, 2n, 2n-1} RNS
    Bakalis, D.
    Vergos, H. T.
    ELECTRONICS LETTERS, 2009, 45 (01) : 27 - 28
  • [50] Efficient methods in converting to modulo 2n+1 and 2n-1
    Manochehri, Kooroush
    Pourmozafari, Saadat
    Sadeghian, Babak
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 178 - +