Composite mesoporous titania nafion-based membranes for direct methanol fuel cell operation at high temperature

被引:73
|
作者
Baglio, V [1 ]
Di Blasi, A
Aricò, AS
Antonucci, V
Antonucci, PL
Trakanprapai, C
Esposito, V
Licoccia, S
Traversa, E
机构
[1] CNR, TAE, I-98126 Messina, Italy
[2] Univ Reggio Calabria, I-89100 Reggio Di Calabria, Italy
[3] Univ Roma Tor Vergata, Dept Chem Sci & Technol, I-00133 Rome, Italy
关键词
D O I
10.1149/1.1931427
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Composite Nafion-based membranes, containing 5 wt % of high-purity mesoporous titania with an average pore size of about 3.5 nm heated to 350, 450, and 600 degrees C as a filler were successfully recasted. Field emission scanning electron microscopy observations showed a high degree of dispersion of mesoporous titania particles in Nafion. Direct methanol fuel cell investigation of such membranes at temperatures higher than 100 degrees C revealed a considerable influence of the presence of the ceramic oxide and of its specific surface area on the electrochemical behavior. The composite membranes allowed operation up to 145 degrees C, showing a significant performance improvement with respect to pure Nafion. At 145 degrees C with oxygen feed, a power density of about 335 mW/cm(2) was recorded for the composite Nafion-based membranes, containing 5 wt % of mesoporous titania calcined at 450 degrees C. (c) 2005 The Electrochemical Society. All rights reserved.
引用
收藏
页码:A1373 / A1377
页数:5
相关论文
共 50 条
  • [31] Nafion/PTFE Composite Membranes for a High Temperature PEM Fuel Cell Application
    Zhang, Xiaoxiao
    Trieu, Dung
    Zheng, Dong
    Ji, Weixiao
    Qu, Huainan
    Ding, Tianyao
    Qiu, Dantong
    Qu, Deyang
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (30) : 11086 - 11094
  • [32] Functionalized zeolite A-nafion composite membranes for direct methanol fuel cells
    Li, Xiao
    Roberts, Edward P. L.
    Holmes, Stuart M.
    Zholobenko, Vladimir
    SOLID STATE IONICS, 2007, 178 (19-20) : 1248 - 1255
  • [33] Blended Nafion®/SPEEK direct methanol fuel cell membranes for reduced methanol permeability
    Tsai, Jie-Cheng
    Cheng, Hui-Pin
    Kuo, Jen-Feng
    Huang, Yao-Hui
    Chen, Chuh-Yung
    JOURNAL OF POWER SOURCES, 2009, 189 (02) : 958 - 965
  • [34] Nafion/Pd-SiO2 nanofiber composite membranes for direct methanol fuel cell applications
    Thiam, H. S.
    Daud, W. R. W.
    Kamarudin, S. K.
    Mohamad, A. B.
    Kadhum, A. A. H.
    Loh, K. S.
    Majlan, E. H.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9474 - 9483
  • [35] Nafion/Analcime and Nafion/Faujasite Composite Membranes for High Temperature Operation of PEMFC
    Kongkachuichay, Paisan
    Pimprom, Siraprapa
    WCECS 2008: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2008, : 63 - 67
  • [36] Sulfonated graphene oxide/Nafion composite membranes for high-performance direct methanol fuel cells
    Chien, Hung-Chung
    Tsai, Li-Duan
    Huang, Chiu-Ping
    Kang, Chi-yun
    Lin, Jiunn-Nan
    Chang, Feng-Chih
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (31) : 13792 - 13801
  • [37] Modified Nafion®-based membranes for use in direct methanol fuel cells
    Dimitrova, P
    Friedrich, KA
    Stimming, U
    Vogt, B
    SOLID STATE IONICS, 2002, 150 (1-2) : 115 - 122
  • [38] Porous silicon-aluminium oxide particles functionalized with acid moieties: An innovative filler for enhanced Nafion-based membranes of direct methanol fuel cell
    Cui, Yanhui
    Liu, Yanchen
    Wu, Junwei
    Zhang, Fei
    Baker, Andrew P.
    Lavorgna, Marino
    Wu, Qixing
    Tang, Qiming
    Lu, Juan
    Xiao, Zhenzhao
    Liu, Xingjun
    JOURNAL OF POWER SOURCES, 2018, 403 : 118 - 126
  • [39] Nafion/PTFE and zirconium phosphate modified Nafion/PTFE composite membranes for direct methanol fuel cells
    Chen, Li-Chun
    Yu, T. Leon
    Lin, Hsiu-Li
    Yeh, Sin-Hsien
    JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (01) : 10 - 20
  • [40] Mesoporous Nafion Membranes for Fuel Cell Applications
    Jiang, San Ping
    Lu, Jinlin
    POLYMER ELECTROLYTE FUEL CELLS 11, 2011, 41 (01): : 1555 - 1560