Functionalized Hydrogel on Plasmonic Nanoantennas for Noninvasive Glucose Sensing

被引:83
|
作者
Mesch, Martin [1 ,2 ]
Zhang, Chunjie [3 ,4 ]
Braun, Paul V. [3 ,4 ]
Giessen, Harald [1 ,2 ]
机构
[1] Univ Stuttgart, Phys Inst 4, D-70569 Stuttgart, Germany
[2] Univ Stuttgart, Res Ctr SCoPE, D-70569 Stuttgart, Germany
[3] Univ Illinois, Beckman Inst Adv Sci & Technol, Dept Mat Sci & Engn, Urbana, IL 61801 USA
[4] Univ Illinois, Frederick Seitz Mat Res Lab, Urbana, IL 61801 USA
来源
ACS PHOTONICS | 2015年 / 2卷 / 04期
关键词
plasmon; glucose; sensing; hydrogel; functionalization; nanoantennas; QUARTZ-CRYSTAL MICROBALANCE; PHOTONIC CRYSTAL; METAL NANOPARTICLES; RESONANCE SENSORS; IONIC-STRENGTH; NANOFABRICATION; SPECTROSCOPY; LITHOGRAPHY; DIFFRACTION; SENSITIVITY;
D O I
10.1021/acsphotonics.5b00004
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Plasmonic nanostructures are intensely investigated as sensors due to their high sensitivity to changes in their nearest dielectric environment. However, additional steps have to be taken to provide specificity for a particular analyte. Here, gold nanoantennas are coated with a thin layer of a boronic acid functionalized hydrogel, which reversibly swells in the presence of glucose. This process is especially sensitive to low glucose concentrations and allows for measurement of values in the physiological millimolar range. The boronic acid is highly specific to glucose, and large molecules, such as proteins, which could cause possible disturbances to the measurements, are successfully blocked from the plasmonic sensing volume by the hydrogel film. Our concept is thus suited to detect physiological glucose levels in the tear liquid under the presence of ambient proteins using functionalized plasmonic sensors on contact lenses at eyesafe wavelengths for optical readout.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条
  • [31] A "plasmonic cuvette": dye chemistry coupled to plasmonic interferometry for glucose sensing
    Siu, Vince S.
    Feng, Jing
    Flanigan, Patrick W.
    Palmore, G. Tayhas R.
    Pacifici, Domenico
    NANOPHOTONICS, 2014, 3 (03) : 125 - 140
  • [32] Aluminum and Indium Plasmonic Nanoantennas in the Ultraviolet
    Ross, Michael B.
    Schatz, George C.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (23): : 12506 - 12514
  • [33] Characteristic Mode Analysis of Plasmonic Nanoantennas
    Yla-Oijala, Pasi
    Tzarouchis, Dimitrios C.
    Raninen, Elias
    Sihvola, Ari
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (05) : 2165 - 2172
  • [34] FRET characterization of hollow plasmonic nanoantennas
    Maccaferri, Nicolo
    Ponzellini, Paolo
    Giovannini, Giorgia
    Zambrana-Puyalto, Xavier
    PLASMONICS IN BIOLOGY AND MEDICINE XVI, 2019, 10894
  • [35] Spectral tunability of realistic plasmonic nanoantennas
    Portela, Alejandro
    Yano, Takaaki
    Santschi, Christian
    Matsui, Hiroaki
    Hayashi, Tomohiro
    Hara, Masahiko
    Martin, Olivier J. F.
    Tabata, Hitoshi
    APPLIED PHYSICS LETTERS, 2014, 105 (09)
  • [36] Coupling Semiconducting Nanowires to Plasmonic Nanoantennas
    Jeannin, Mathieu
    Rueda-Fonseca, Pamela
    Songmuang, Rudeesun
    Bellet-Amalric, Edith
    Kheng, Kuntheak
    Nogues, Gilles
    NANO-OPTICS: PRINCIPLES ENABLING BASIC RESEARCH AND APPLICATIONS, 2017, : 517 - 518
  • [37] Engineering plasmonic and dielectric directional nanoantennas
    Hildebrandt, Andre
    Reichelt, Matthias
    Meier, Torsten
    Foerstner, Jens
    ULTRAFAST PHENOMENA AND NANOPHOTONICS XVIII, 2014, 8984
  • [38] Silicon-based plasmonic nanoantennas
    Mekawey, Hosam I.
    Ismail, Yehea
    Swillam, Mohamed A.
    SILICON PHOTONICS XIV, 2019, 10923
  • [39] Levitated Plasmonic Nanoantennas in an Aqueous Environment
    Tuan, Yazgan
    Kim, Ji Tae
    Liu, Hsuan-Wei
    Sandoghdar, Vahid
    ACS NANO, 2017, 11 (08) : 7674 - 7678
  • [40] Engineering the optical response of plasmonic nanoantennas
    Fischer, Holger
    Martin, Olivier J. F.
    OPTICS EXPRESS, 2008, 16 (12) : 9144 - 9154