Rapid Continuous Antisolvent Crystallization of Multicomponent Systems

被引:15
|
作者
Raza, Syed A. [1 ]
Schacht, Ulrich [2 ,4 ]
Svoboda, Vaclav [2 ,4 ]
Edwards, Darren P. [1 ]
Florence, Alastair J. [1 ,4 ]
Pulham, Colin R. [3 ]
Sefcik, Jan [2 ,4 ]
Oswald, Iain D. H. [1 ]
机构
[1] Univ Strathclyde, SIPBS, 161 Cathedral St, Glasgow G4 0RE, Lanark, Scotland
[2] Univ Strathclyde, Dept Chem & Proc Engn, 75 Montrose St, Glasgow G1 1XJ, Lanark, Scotland
[3] Univ Edinburgh, EaStCHEM Sch Chem, Joseph Black Bldg,David Brewster Rd, Edinburgh EH9 3FJ, Midlothian, Scotland
[4] Univ Strathclyde, EPSRC Ctr Innovat Mfg Continuous Mfg & Crystallis, Technol & Innovat Ctr, 99 George St, Glasgow G1 1RD, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
SOLID-LIQUID EQUILIBRIA; L-AMINO-ACIDS; PLUS WATER-SYSTEM; L-ISOLEUCINE; L-LEUCINE; CRYSTAL-STRUCTURES; L-VALINE; MOLECULAR AGGREGATION; 1/1; COMPLEXES; HIGH-PRESSURE;
D O I
10.1021/acs.cgd.7b01105
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper describes the application of a novel antisolvent crystallization approach to rapid production of tunable solid solutions of hydrophobic amino acids, comprising L-leucine, L-isoleucine, and L-valine. The antisolvent approach provides an alternative to other crystallization routes, e.g., ball milling, liquid-assisted grinding, and slurry methods, to achieve the required multicomponent solid phases. We report new crystal structures of L-leucine/L-isoleucine and L-leucine/Lvaline, and confirm a recent report on a new form of Lisoleucine/L-valine. We used these multicomponent complexes as a test set of materials to demonstrate translation of small scale batch antisolvent crystallization to a continuous production process.
引用
收藏
页码:210 / 218
页数:9
相关论文
共 50 条
  • [41] Three-Step Mechanism of Antisolvent Crystallization
    Dighe A.V.
    Podupu P.K.R.
    Coliaie P.
    Singh M.R.
    Crystal Growth and Design, 2022, 22 (05): : 3119 - 3127
  • [42] Microfluidic antisolvent crystallization for chiral symmetry breaking
    Jang, Jiye
    Coquerel, Gerard
    Seo, Tae Seok
    Kim, Woo-Sik
    Park, Bum Jun
    LAB ON A CHIP, 2024, 24 (21) : 5055 - 5064
  • [43] Incorporating Solvent-Dependent Kinetics To Design a Multistage, Continuous, Combined Cooling/Antisolvent Crystallization Process
    Schall, Jennifer M.
    Capellades, Gerard
    Mandur, Jasdeep S.
    Braatz, Richard D.
    Myerson, Allan S.
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2019, 23 (09) : 1960 - 1969
  • [44] NORMAL CRYSTALLIZATION IN THE MULTICOMPONENT SYSTEMS WITHOUT SOLID-SOLUTION
    KOSYAKOV, VI
    SIBIRSKII KHIMICHESKII ZHURNAL, 1993, (03): : 107 - 112
  • [45] Crystallization and higher-order structure of multicomponent polymeric systems
    Takeshita, Hiroki
    Shiomi, Tomoo
    Takenaka, Katsuhiko
    Arai, Fuminori
    POLYMER, 2013, 54 (18) : 4776 - 4789
  • [46] Theoretical Feedback Control Scheme for the Ultrasound-Assisted Continuous Antisolvent Crystallization of Aspirin in a Tubular Crystallizer
    Savvopoulos, Symeon, V
    Voutetakis, Spyros S.
    Kuhn, Simon
    Ipsakis, Dimitris
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (17) : 6221 - 6234
  • [47] Continuous Antisolvent Crystallization Using Fluidic Devices: Fluidic Oscillator, Helical Coil, and Coiled Flow Inverter
    Yu, Yang
    Robertson, Peter K. J.
    V. Ranade, Vivek
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (40) : 15000 - 15013
  • [48] Solubility of Nifedipine in Mixed Solvents and Antisolvent Crystallization
    Kang, Mi-Young
    Yeo, Sang-Do
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2020, 58 (01): : 92 - 97
  • [49] Kinetic study of ultrasonic antisolvent crystallization of sirolimus
    Gandhi, P. J.
    Murthy, Z. V. P.
    CRYSTAL RESEARCH AND TECHNOLOGY, 2010, 45 (03) : 321 - 327
  • [50] Antisolvent crystallization intensified by a jet crystallizer and a method for investigating crystallization kinetics
    Wu, Bin
    Li, Jing
    Li, Chunhui
    He, Jinxuan
    Luo, Peicheng
    CHEMICAL ENGINEERING SCIENCE, 2020, 211