CT Cerebral Blood Flow Maps Optimally Correlate With Admission Diffusion-Weighted Imaging in Acute Stroke but Thresholds Vary by Postprocessing Platform

被引:124
作者
Kamalian, Shahmir
Kamalian, Shervin
Maas, Matthew B. [2 ]
Goldmacher, Greg V.
Payabvash, Seyedmehdi
Akbar, Adnan
Schaefer, Pamela W.
Furie, Karen L. [2 ]
Gonzalez, R. Gilberto
Lev, Michael H. [1 ]
机构
[1] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Div Neuroradiol,Dept Radiol, Boston, MA 02114 USA
[2] Harvard Univ, Sch Med, Massachusetts Gen Hosp, Dept Neurol, Boston, MA 02114 USA
基金
美国医疗保健研究与质量局; 美国国家卫生研究院;
关键词
acute stroke; cerebral blood flow; cerebral blood volume; CT perfusion; ACUTE ISCHEMIC-STROKE; INFARCT CORE; INTRAARTERIAL THROMBOLYSIS; PERFUSION; PENUMBRA; VOLUME; NEED;
D O I
10.1161/STROKEAHA.110.610618
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose-Admission infarct core lesion size is an important determinant of management and outcome in acute (<9 hours) stroke. Our purposes were to: (1) determine the optimal CT perfusion parameter to define infarct core using various postprocessing platforms; and (2) establish the degree of variability in threshold values between these different platforms. Methods-We evaluated 48 consecutive cases with vessel occlusion and admission CT perfusion and diffusion-weighted imaging within 3 hours of each other. CT perfusion was acquired with a "second-generation" 66-second biphasic cine protocol and postprocessed using "standard" (from 2 vendors, "A-std" and "B-std") and "delay-corrected" (from 1 vendor, "A-dc") commercial software. Receiver operating characteristic curve analysis was performed comparing each CT perfusion parameter-both absolute and normalized to the contralateral uninvolved hemisphere-between infarcted and noninfarcted regions as defined by coregistered diffusion-weighted imaging. Results-Cerebral blood flow had the highest accuracy (receiver operating characteristic area under the curve) for all 3 platforms (P<0.01). The maximal areas under the curve for each parameter were: absolute cerebral blood flow 0.88, cerebral blood volume 0.81, and mean transit time 0.82 and relative Cerebral blood flow 0.88, cerebral blood volume 0.83, and mean transit time 0.82. Optimal receiver operating characteristic operating point thresholds varied significantly between different platforms (Friedman test, P<0.01). Conclusions-Admission absolute and normalized "second-generation" cine acquired CT cerebral blood flow lesion volumes correlate more closely with diffusion-weighted imaging-defined infarct core than do those of CT cerebral blood volume or mean transit time. Although limited availability of diffusion-weighted imaging for some patients creates impetus to develop alternative methods of estimating core, the marked variability in quantification among different postprocessing software limits generalizability of parameter map thresholds between platforms. (Stroke. 2011; 42: 1923-1928.)
引用
收藏
页码:1923 / 1928
页数:6
相关论文
共 21 条
[1]   Cerebral blood flow threshold of ischemic penumbra and infarct core in acute ischemic stroke - A systematic review [J].
Bandera, E ;
Botteri, M ;
Minelli, C ;
Sutton, A ;
Abrams, KR ;
Latronico, N .
STROKE, 2006, 37 (05) :1334-1339
[2]   Variability of cerebral blood volume and oxygen extraction: stages of cerebral haemodynamic impairment revisited [J].
Derdeyn, CP ;
Videen, TO ;
Yundt, KD ;
Fritsch, SM ;
Carpenter, DA ;
Grubb, RL ;
Powers, WJ .
BRAIN, 2002, 125 :595-607
[3]   Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra [J].
Furlan, M ;
Marchal, G ;
Viader, F ;
Derlon, JM ;
Baron, JC .
ANNALS OF NEUROLOGY, 1996, 40 (02) :216-226
[4]  
HACKE W, 1995, JAMA-J AM MED ASSOC, V274, P1017, DOI 10.1001/jama.274.13.1017
[5]   CT Perfusion Imaging of Acute Stroke: The Need for Arrival Time, Delay Insensitive, and Standardized Postprocessing Algorithms? [J].
Konstas, Angelos A. ;
Lev, Michael H. .
RADIOLOGY, 2010, 254 (01) :22-25
[6]   Difference in Tracer Delay-induced Effect among Deconvolution Algorithms in CT Perfusion Analysis: Quantitative Evaluation with Digital Phantoms [J].
Kudo, Kohsuke ;
Sasaki, Makoto ;
Ogasawara, Kuniaki ;
Terae, Satoshi ;
Ehara, Shigeru ;
Shirato, Hiroki .
RADIOLOGY, 2009, 251 (01) :241-249
[7]  
Lev M.H., 2002, Brain Mapping: The Methods, P427, DOI [10.1016/B978-012693019-1/50019-8, DOI 10.1016/B978-012693019-1/50019-8]
[8]   Acute stroke: Improved nonenhanced CT detection - Benefits of soft-copy interpretation by using variable window width and center level settings [J].
Lev, MH ;
Farkas, J ;
Gemmete, JJ ;
Hossain, ST ;
Hunter, GJ ;
Koroshetz, WJ ;
Gonzalez, G .
RADIOLOGY, 1999, 213 (01) :150-155
[9]   Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis - Prediction of final infarct volume and clinical outcome [J].
Lev, MH ;
Segal, AZ ;
Farkas, J ;
Hossain, ST ;
Putman, C ;
Hunter, GJ ;
Budzik, R ;
Harris, GJ ;
Buonanno, FS ;
Ezzeddine, MA ;
Chang, YC ;
Koroshetz, WJ ;
Gonzalez, RG ;
Schwamm, LH .
STROKE, 2001, 32 (09) :2021-2027
[10]   Identification of penumbra and infarct in acute ischemic stroke using computed tomography perfusion-derived blood flow and blood volume measurements [J].
Murphy, B. D. ;
Fox, A. J. ;
Lee, D. H. ;
Sahlas, D. J. ;
Black, S. E. ;
Hogan, M. J. ;
Coutts, S. B. ;
Demchuk, A. M. ;
Goyal, M. ;
Aviv, R. I. ;
Symons, S. ;
Gulka, I. B. ;
Beletsky, V. ;
Pelz, D. ;
Hachinski, V. ;
Chan, R. ;
Lee, T. -Y. .
STROKE, 2006, 37 (07) :1771-1777