Many-Objective Evolutionary Algorithm Based On Decomposition With Random And Adaptive Weights

被引:0
|
作者
Farias, Lucas R. C. [1 ]
Araujo, Aluizio F. R. [1 ]
机构
[1] Univ Fed Pernambuco, Ctr Informat, Recife, PE, Brazil
关键词
PERFORMANCE; MOEA/D; OPTIMIZATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Decomposition-based evolutionary algorithms that work with an appropriate set of weights might obtain a quality final solution set in spite of the use of uniformly distributed and fixed weights that has two important limitations: it may fail depending on the problem geometry; and the population size is not flexible when dealing with Many-objective Problems (MaOPs). Recently proposed, the MOEA/D with Uniformly Randomly Adaptive Weights (MOEA/D-URAW) deals with these limitations using uniformly randomly weights generation method and weight adaptation based on the population sparsity. This paper validates this new approach, the MOEA/D-URAW, with state-of-the-art evolutionary algorithms in MaOPs, i.e., WFG1-WFG9 and MOKP with 5, 10 and 15 objectives. The results suggest the effectiveness of this approach.
引用
收藏
页码:3746 / 3751
页数:6
相关论文
共 50 条
  • [31] Many-Objective Evolutionary Algorithm with Adaptive Reference Vector
    Zhang, Maoqing
    Wang, Lei
    Li, Wuzhao
    Hu, Bo
    Li, Dongyang
    Wu, Qidi
    INFORMATION SCIENCES, 2021, 563 (563) : 70 - 90
  • [32] Constrained many-objective evolutionary algorithm based on adaptive infeasible ratio
    Liang, Zhengping
    Chen, Canran
    Wang, Xiyu
    Liu, Ling
    Zhu, Zexuan
    MEMETIC COMPUTING, 2023, 15 (03) : 281 - 300
  • [33] An adaptive switching-based evolutionary algorithm for many-objective optimization
    Chen, Sanyan
    Wang, Xuewu
    Gao, Jin
    Du, Wei
    Gu, Xingsheng
    KNOWLEDGE-BASED SYSTEMS, 2022, 248
  • [34] Adaptive Dominance Criterion Based Evolutionary Algorithm for Many-objective Optimization
    Sun W.-J.
    Li J.-H.
    Li M.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (08): : 1596 - 1604
  • [35] Adaptive Sorting-Based Evolutionary Algorithm for Many-Objective Optimization
    Liu, Chao
    Zhao, Qi
    Yan, Bai
    Elsayed, Saber
    Ray, Tapabrata
    Sarker, Ruhul
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 247 - 257
  • [36] Adaptive Strategies Based on Differential Evolutionary Algorithm for Many-Objective Optimization
    Sun, Yifei
    Bian, Kun
    Liu, Zhuo
    Sun, Xin
    Yao, Ruoxia
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2021, 2021
  • [37] Constrained many-objective evolutionary algorithm based on adaptive infeasible ratio
    Zhengping Liang
    Canran Chen
    Xiyu Wang
    Ling Liu
    Zexuan Zhu
    Memetic Computing, 2023, 15 : 281 - 300
  • [38] Objective Reduction Algorithm Based on Decomposition and Hyperplane Approximation for Evolutionary Many-Objective Optimization
    Liu Hailin
    Xiao Junrong
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (09) : 3289 - 3298
  • [39] A Decomposition-Based Evolutionary Algorithm with Adaptive Weight Vectors for Multi- and Many-objective Optimization
    Peng, Guang
    Wolter, Katinka
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2020, 2020, 12104 : 149 - 164
  • [40] An Evolutionary Many-Objective Optimization Algorithm based on IGD Indicator and Region Decomposition
    Feng, Shuifeng
    Wen, Jiechang
    2019 15TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS 2019), 2019, : 206 - 210