Theoretical analysis and experimental investigation of hysteretic performance of self-centering variable friction damper braces

被引:44
|
作者
Wang, Yongwei [1 ]
Zhou, Zhen [1 ]
Xie, Qin [1 ,2 ]
Huang, Linjie [1 ]
机构
[1] Southeast Univ, Key Lab Concrete & Prestressed Concrete Struct, Minist Educ, Nanjing 210096, Peoples R China
[2] Guizhou Inst Technol, Sch Civil Engn, Guiyang 550003, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-centering; Variable friction damper; Hysteretic performance; Energy dissipation; Basalt-fiber-reinforced polymer (BFRP); MULTISTORY BUILDINGS; SEISMIC RESPONSE; STEEL FRAME; CONNECTION; DESIGN; SYSTEM;
D O I
10.1016/j.engstruct.2020.110779
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Traditional buildings, even with normal self-centering energy dissipation (SCED) braces, might suffer from large deformations and high mode effects under an extremely strong earthquake, leading to a concentration of inter-story drift in upper floors. To satisfy the requirements of resilience, larger post-yield stiffness and higher energy dissipation, a novel brace with pretensioned basalt fiber-reinforced polymer (BFRP) tendons and variable friction dampers (VFDs) was developed, and this brace was termed the self-centering variable friction damper (SC-VFD) brace. The variable stiffness and sliding force of the VFD system were theoretically analyzed. This was followed by quasi-static experiments on two VFD and two SC-VFD braces with different parameters. The theoretical analysis and experimental results revealed the same tendencies, demonstrating the reliability and feasibility of SC-VFD braces. The hysteretic curve of the SC-VFD braces exhibited stable and normal flag-shape behavior before the second activation, while the hysteresis curve indicated a variable flag-shape behavior with second activation, variable friction force, and larger post-yield stiffness when the brace slid at slope section. Compared with the VFD brace, the SC-VFD brace had the same energy dissipation ability but less residual displacement and lower equivalent viscous damping ratio. More combinations of disc springs in series resulted in smaller axial forces and lowers post-yielding stiffness, thereby decreasing the energy dissipation capability.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Self-centering steel-timber hybrid shear wall with slip friction dampers: Theoretical analysis and experimental investigation
    Cui, Ye
    Shu, Zhan
    Zhou, Ruirui
    Li, Zheng
    Chen, Fei
    Ma, Zhong
    STRUCTURAL DESIGN OF TALL AND SPECIAL BUILDINGS, 2020, 29 (15):
  • [32] The hysteretic behavior and working mechanism of self-centering steel buckling-restrained braces
    Xu L.-H.
    Chen P.
    Gongcheng Lixue/Engineering Mechanics, 2020, 37 (12): : 147 - 156
  • [33] Hysteretic Behavior of Steel Plate Shear Wall with Self-Centering Energy Dissipation Braces
    Xu L.
    Liu J.
    Xu, Longhe (lhxu@bjtu.edu.cn), 2018, Tianjin University (51): : 949 - 956
  • [34] Performance and application of novel self-centering viscous damper
    Bu Z.-Y.
    He J.
    Yu B.-W.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (11): : 3141 - 3150
  • [35] Experimental study on component performance in steel plate shear wall with self-centering braces
    Liu, Jia-Lin
    Xu, Long-He
    Li, Zhong-Xian
    STEEL AND COMPOSITE STRUCTURES, 2020, 37 (03): : 341 - 351
  • [36] Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces
    Huihui Dong
    Xiuli Du
    Qiang Han
    Kaiming Bi
    Hong Hao
    Bulletin of Earthquake Engineering, 2019, 17 : 3255 - 3281
  • [37] Experiment and numerical simulation of a novel dual self-centering friction damper
    Qu, Juntong
    Bai, Yuxiang
    Zhang, Chao
    Li, Yuheng
    Wang, Wenbin
    Pu, Junxiang
    Zhendong yu Chongji/Journal of Vibration and Shock, 2024, 43 (08): : 127 - 135
  • [38] Experimental, analytical, and numerical study of a wall-type self-centering slip friction damper
    Qiu, Canxing
    Huangfu, Haozhi
    Liu, Jiawang
    Cao, Yongping
    Du, Xiuli
    Liu, Hang
    ENGINEERING STRUCTURES, 2025, 323
  • [39] Hysteretic performance of RC double-column bridge piers with self-centering buckling-restrained braces
    Dong, Huihui
    Du, Xiuli
    Han, Qiang
    Bi, Kaiming
    Hao, Hong
    BULLETIN OF EARTHQUAKE ENGINEERING, 2019, 17 (06) : 3255 - 3281
  • [40] Mechanical Behaviors of a Buckling-Plate Self-Centering Friction Damper
    Wang, Qinting
    Shen, Hu
    Zhang, Zhenhua
    Qian, Hui
    BUILDINGS, 2023, 13 (02)