Automated Real-Space Refinement of Protein Structures Using a Realistic Backbone Move Set

被引:22
|
作者
Haddadian, Esmael J. [1 ]
Gong, Haipeng [1 ,6 ]
Jha, Abhishek K. [1 ,2 ,3 ]
Yang, Xiaojing [1 ]
DeBartolo, Joe [1 ]
Hinshaw, James R. [2 ,3 ]
Rice, Phoebe A. [1 ]
Sosnick, Tobin R. [1 ,4 ]
Freed, Karl F. [2 ,3 ,5 ]
机构
[1] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Chem, Chicago, IL 60637 USA
[3] Univ Chicago, James Franck Inst, Chicago, IL 60637 USA
[4] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
[5] Univ Chicago, Computat Inst, Chicago, IL 60637 USA
[6] Tsinghua Univ, Sch Life Sci, MOE Key Lab Bioinformat, Beijing 100084, Peoples R China
基金
美国国家卫生研究院;
关键词
ISOLATED-PAIR HYPOTHESIS; STATISTICAL POTENTIALS; STRUCTURE PREDICTION; CRYSTALLOGRAPHY; SEQUENCE; CASP; SOFTWARE; COMPLEX; MODELS;
D O I
10.1016/j.bpj.2011.06.063
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Crystals of many important biological macromolecules diffract to limited resolution, rendering accurate model building and refinement difficult and time-consuming. We present a torsional optimization protocol that is applicable to many such situations and combines Protein Data Bank-based torsional optimization with real-space refinement against the electron density derived from crystallography or cryo-electron microscopy. Our method converts moderate- to low-resolution structures at initial (e.g., backbone trace only) or late stages of refinement to structures with increased numbers of hydrogen bonds, improved crystallographic R-factors, and superior backbone geometry. This automated method is applicable to DNA-binding and membrane proteins of any size and will aid studies of structural biology by improving model quality and saving considerable effort. The method can be extended to improve NMR and other structures. Our backbone score and its sequence profile provide an additional standard tool for evaluating structural quality.
引用
收藏
页码:899 / 909
页数:11
相关论文
共 50 条
  • [21] Simulated-annealing real-space refinement as a tool in model building
    Korostelev, A
    Bertram, R
    Chapman, MS
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2002, 58 : 761 - 767
  • [22] Conformational disorder of proteins assessed by real-space molecular dynamics refinement
    Chen, Z
    Chapman, MS
    BIOPHYSICAL JOURNAL, 2001, 80 (03) : 1466 - 1472
  • [23] Metamaterial Structures to Realize Real-space Gauge Field
    Liu, Fu
    Wang, Saisai
    Hang, Zhi Hong
    Li, Jensen
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 976 - 976
  • [24] Molding atomic structures into intermediate-resolution Cryo-EM density maps of ribosomal complexes using real-space refinement
    Gao, HX
    Frank, J
    STRUCTURE, 2005, 13 (03) : 401 - 406
  • [25] Real Rotamers using Real-Space Correlation Coefficients
    Hintze, Bradley J.
    Keedy, Daniel A.
    Richardson, David C.
    Richardson, Jane S.
    BIOPHYSICAL JOURNAL, 2013, 104 (02) : 547A - 547A
  • [26] Real-space refinement of ribosome crystal structure into the cryo-EM maps using YAMMP.
    Devkota, Batsal
    Li, Wen
    Frank, Joachim
    Harvey, Stephen C.
    BIOPHYSICAL JOURNAL, 2007, : 564A - 564A
  • [27] Analytic representation of inhomogeneous-resolution density maps and real-space refinement
    Ourjoumtsev, A.
    Urzhumtseva, L.
    Lunin, V. Y.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E314 - E314
  • [28] COMBINED-INFORMATION PROTEIN-STRUCTURE REFINEMENT - POTENTIAL ENERGY-CONSTRAINED REAL-SPACE METHOD FOR REFINEMENT WITH LIMITED DIFFRACTION DATA
    FITZWATER, S
    SCHERAGA, HA
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1982, 79 (06): : 2133 - 2137
  • [29] PRELIMINARY REFINEMENT OF PROTEIN COORDINATES IN REAL SPACE
    FLETTERICK, RJ
    WYCKOFF, HW
    ACTA CRYSTALLOGRAPHICA SECTION A, 1975, 31 (SEP1): : 698 - 700
  • [30] Automated real-space lattice extraction for atomic force microscopy images
    Corrias, Marco
    Papa, Lorenzo
    Sokolovic, Igor
    Birschitzky, Viktor
    Gorfer, Alexander
    Setvin, Martin
    Schmid, Michael
    Diebold, Ulrike
    Reticcioli, Michele
    Franchini, Cesare
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (01):