Distributed localization for IoT with multi-agent reinforcement learning

被引:6
|
作者
Jia, Jie [1 ,2 ]
Yu, Ruoying [1 ]
Du, Zhenjun [3 ]
Chen, Jian [1 ]
Wang, Qinghu [1 ,2 ]
Wang, Xingwei [1 ,2 ]
机构
[1] Northeastern Univ, Sch Comp Sci & Engn, Shenyang 110819, Peoples R China
[2] Minist Educ, Engn Res Ctr Secur Technol Complex Network Syst, Shenyang 110819, Peoples R China
[3] SIASUN Robot & Automat CO Ltd, Shenyang, Peoples R China
来源
NEURAL COMPUTING & APPLICATIONS | 2022年 / 34卷 / 09期
基金
中国国家自然科学基金;
关键词
Distributed localization; Q-learning; Internet of things (IoT); Multi-agent reinforcement learning; PERIODIC-SOLUTION; WIRELESS; ALGORITHM;
D O I
10.1007/s00521-021-06855-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Localization has become one of the important techniques for Internet of Things (IoT). However, most existing localization methods need a central controller and operate on an off-line manner, which cannot satisfy the requirements of real-time IoT applications. In order to address this issue, a novel distributed localization scheme based on multi-agent reinforcement learning (MARL) is proposed. The localization problem is first reformulated as a stochastic game for maximizing the sum of the negative localization error. Each non-anchor node is then modeled as an intelligent agent, where its action space corresponds to possible locations. After that, we invoke a MARL framework on the basis of conventional Q-learning framework to learn the optimal policy, and to maximize the long-term expected reward. The novel strategy is also proposed to reduce the localization error. Extensive simulations demonstrate that the proposed localization method is superior to game theoretic-based distributed localization algorithm and virtual force-based distributed localization algorithm in terms of both localization accuracy and convergence speed, and is suitable for on-line localization scenarios.
引用
收藏
页码:7227 / 7240
页数:14
相关论文
共 50 条
  • [21] Distributed, Heterogeneous, Multi-Agent Social Coordination via Reinforcement Learning
    Shi, Dongqing
    Sauter, Michael Z.
    Kralik, Jerald D.
    2009 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2009), VOLS 1-4, 2009, : 653 - 658
  • [22] Hierarchical Reinforcement Learning with Opponent Modeling for Distributed Multi-agent Cooperation
    Liang, Zhixuan
    Cao, Jiannong
    Jiang, Shan
    Saxena, Divya
    Xu, Huafeng
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS (ICDCS 2022), 2022, : 884 - 894
  • [23] Dynamic distributed constraint optimization using multi-agent reinforcement learning
    Shokoohi, Maryam
    Afsharchi, Mohsen
    Shah-Hoseini, Hamed
    SOFT COMPUTING, 2022, 26 (08) : 3601 - 3629
  • [24] Multi-Agent Distributed Reinforcement Learning for Making Decentralized Offloading Decisions
    Tan, Jing
    Khalili, Ramin
    Karl, Holger
    Hecker, Artur
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2022), 2022, : 2098 - 2107
  • [25] Distributed Multi-agent Reinforcement Learning for Directional UAV Network Control
    He, Linsheng
    Zhao, Jiamiao
    Hu, Fei
    PROCEEDINGS OF THE 32ND INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, HPDC 2023, 2023, : 317 - 318
  • [26] Distributed Cooperative Multi-Agent Reinforcement Learning with Directed Coordination Graph
    Jing, Gangshan
    Bai, He
    George, Jemin
    Chakrabortty, Aranya
    Sharma, Piyush K.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3273 - 3278
  • [27] Distributed interference coordination based on multi-agent deep reinforcement learning
    Liu T.
    Luo Y.
    Yang C.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (07): : 38 - 48
  • [28] Cooperative Multi-Agent Systems Using Distributed Reinforcement Learning Techniques
    Zemzem, Wiem
    Tagina, Moncef
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES-2018), 2018, 126 : 517 - 526
  • [29] Distributed Signal Control of Multi-agent Reinforcement Learning Based on Game
    Qu Z.-W.
    Pan Z.-T.
    Chen Y.-H.
    Li H.-T.
    Wang X.
    Chen, Yong-Heng (cyh@jlu.edu.cn), 1600, Science Press (20): : 76 - 82and100
  • [30] Dynamic distributed constraint optimization using multi-agent reinforcement learning
    Maryam Shokoohi
    Mohsen Afsharchi
    Hamed Shah-Hoseini
    Soft Computing, 2022, 26 : 3601 - 3629