Segmentation Driven Object Detection with Fisher Vectors

被引:46
|
作者
Cinbis, Ramazan Gokberk [1 ]
Verbeek, Jakob
Schmid, Cordelia
机构
[1] INRIA Grenoble Rhone Alpes, LEAR, Montbonnot St Martin, France
关键词
D O I
10.1109/ICCV.2013.369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an object detection system based on the Fisher vector (FV) image representation computed over SIFT and color descriptors. For computational and storage efficiency, we use a recent segmentation-based method to generate class-independent object detection hypotheses, in combination with data compression techniques. Our main contribution is a method to produce tentative object segmentation masks to suppress background clutter in the features. Re-weighting the local image features based on these masks is shown to improve object detection significantly. We also exploit contextual features in the form of a full-image FV descriptor, and an inter-category rescoring mechanism. Our experiments on the PASCAL VOC 2007 and 2010 datasets show that our detector improves over the current state-of-the-art detection results.
引用
收藏
页码:2968 / 2975
页数:8
相关论文
共 50 条
  • [31] Robust Object Detection with Interleaved Categorization and Segmentation
    Bastian Leibe
    Aleš Leonardis
    Bernt Schiele
    International Journal of Computer Vision, 2008, 77 : 259 - 289
  • [32] Deep Learning in Object Recognition, Detection, and Segmentation
    Wang, Xiaogang
    FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (04): : I - +
  • [33] Particle swarm optimization for object detection and segmentation
    Cagnoni, Stefano
    Mordonini, Monica
    Sartori, Jonathan
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2007, 4448 : 241 - +
  • [34] Object segmentation using Independent Motion Detection
    Kumar, Sriram
    Odone, Francesca
    Noceti, Nicoletta
    Natale, Lorenzo
    2015 IEEE-RAS 15TH INTERNATIONAL CONFERENCE ON HUMANOID ROBOTS (HUMANOIDS), 2015, : 94 - 100
  • [35] MOVE: Unsupervised Movable Object Segmentation and Detection
    Bielski, Adam
    Favaro, Paolo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [36] Object recognition using segmentation for feature detection
    Fussenegger, M
    Opelt, A
    Pinz, A
    Auer, P
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, 2004, : 41 - 44
  • [37] Reliable Object Detection and Segmentation using Inpainting
    Joung, Ji Hoon
    Ryoo, M. S.
    Choi, Sunglok
    Kim, Sung-Rak
    2012 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2012, : 3871 - 3876
  • [38] EXPOSURE SEGMENTATION FOR FAINT ASTRONOMICAL OBJECT DETECTION
    BIJAOUI, A
    CHARVIN, P
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II, 1981, 292 (11): : 837 - 840
  • [39] Towards Unified Object Detection and Semantic Segmentation
    Dong, Jian
    Chen, Qiang
    Yan, Shuicheng
    Yuille, Alan
    COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 : 299 - 314
  • [40] Segmentation-Based Salient Object Detection
    Yang, Kai-Fu
    Gao, Xin
    Zhao, Ju-Rong
    Li, Yong-Jie
    COMPUTER VISION, CCCV 2015, PT I, 2015, 546 : 94 - 102