Sign-changing solutions for some class of elliptic system

被引:0
|
作者
Gan, Lu [1 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Elliptic system; non-radial sign-changing solutions; Lyapunov-Schmidt reduction; SCHRODINGER-POISSON PROBLEM; POSITIVE SOLUTIONS; BOUND-STATES; EXISTENCE; EQUATIONS; MAXWELL; SPHERES; WAVES;
D O I
10.1080/17476933.2020.1736052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence of multiple non-radial sign-changing solutions for - Delta u + u + alpha K(vertical bar x vertical bar) Phi(x)u = vertical bar u vertical bar(p-2)u, x is an element of R-3, - Delta Phi = K(vertical bar x vertical bar)u(2), x is an element of R-3, where 2 < p < 6, alpha < 0 can be regarded as a parameter and K(r)(r = vertical bar x vertical bar) is a positive continuous function. We proved that the above equation possesses a non-radial sign-changing solutions with exactly k maximum points and k minimum points for suitable range of alpha.
引用
收藏
页码:676 / 688
页数:13
相关论文
共 50 条
  • [21] Existence of multiple solutions for an elliptic system with sign-changing weight functions
    Xiu, Zonghu
    Chen, Caisheng
    Huang, Jincheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (02) : 531 - 541
  • [22] Sign-changing solutions for some fourth-order nonlinear elliptic problems
    Zhou, Jianwen
    Wu, Xian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (01) : 542 - 558
  • [23] Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary condition
    Li, C
    Li, SJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 298 (01) : 14 - 32
  • [24] Multiple sign-changing solutions of an elliptic eigenvalue problem
    Qian, AX
    Li, SJ
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (04) : 737 - 746
  • [25] Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations
    Alves, Claudianor O.
    Goncalves, Jose V. A.
    Silva, Kaye O.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2015, 66 (05): : 2601 - 2623
  • [26] Multiple sign-changing radially symmetric solutions in a general class of quasilinear elliptic equations
    Claudianor O. Alves
    Jose V. A. Goncalves
    Kaye O. Silva
    Zeitschrift für angewandte Mathematik und Physik, 2015, 66 : 2601 - 2623
  • [27] Infinitely many sign-changing solutions for a class of critical elliptic systems with Neumann conditions
    de Morais Filho, D. C.
    Faria, L. F. O.
    Miyagaki, O. H.
    Pereira, F. R.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2014, 144 (01) : 53 - 69
  • [28] Multiple solutions for a class of infinitely degenerate elliptic equations with a sign-changing weight function
    Tian, Shuying
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6987 - 6998
  • [29] Sign-changing solutions of an elliptic system with critical exponent in dimension N = 5
    Shuangjie Peng
    Yanfang Peng
    Qingfang Wang
    Journal d'Analyse Mathématique, 2019, 137 : 231 - 249
  • [30] Sign-changing solutions of an elliptic system with critical exponent in dimension N=5
    Peng, Shuangjie
    Peng, Yanfang
    Wang, Qingfang
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 137 (01): : 231 - 249