Adenovirus-mediated gene transfer of transforming growth factor-β3, but not transforming growth factor-β1, inhibits constrictive remodeling and reduces luminal loss after coronary angioplasty

被引:35
|
作者
Kingston, PA
Sinha, S
Appleby, CE
David, A
Verakis, T
Castro, MG
Lowenstein, PR
Heagerty, AM
机构
[1] Univ Manchester, Vasc Gene Therapy Unit, Manchester, Lancs, England
[2] Manchester Royal Infirm, Dept Med, Manchester M13 9WL, Lancs, England
关键词
angioplasty; gene therapy; restenosis; collagen;
D O I
10.1161/01.CIR.0000097068.49080.A0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Extracellular matrix (ECM) remodeling is central to the development of restenosis after PTCA. Substantial evidence implicates transforming growth factor-beta(1) (TGF-beta(1)), a regulator of ECM deposition by vascular cells, in its pathogenesis. TGF-beta(3) reduces TGF-beta(1)-induced ECM deposition in cutaneous wounds. We therefore investigated the effects of intracoronary expression of TGF-beta(3) and TGF-beta(1) on luminal loss after angioplasty. Methods and Results-Porcine coronary arteries received an adenovirus expressing TGF-beta(3), TGF-beta(1), or lacZ (beta-galactosidase), or PBS only, at the site of angioplasty. Morphometric analysis 28 days after angioplasty confirmed reduced luminal loss in TGF-beta(3) vessels (-0.65+/-0.10 mm(2)) compared with lacZ (-1.18+/-0.19 mm(2)) or PBS only (-1.19+/-0.17 mm(2); P=0.003). Luminal loss was not reduced in TGF-beta(1) vessels (-1.02+/-0.19 mm(2); P=0.48). An increase in the external elastic lamina area in TGF-beta(3)-treated vessels (-0.73+/-0.32 mm(2)) contrasted with decreases in control vessels (mean, -0.53+/-0.17 mm(2); P=0.001) and TGF-beta(1) vessels (-0.87+/-0.34 mm(2); P=0.003). Collagen content increased at the site of injury in TGF-beta(3)-treated vessels (26.1+/-14.2%) but decreased in the lacZ (-22.8+/-6.6%) and PBS-only (-23.4+/-7.0%; P=0.002) groups and was not significantly changed in TGF-beta(1)-treated vessels. Conclusions-Expression of TGF-beta(3) inhibits constrictive remodeling after PTCA and reduces luminal loss. This is accompanied by increased adventitial collagen, which may act as an external "scaffold" preventing vessel constriction. These findings confirm the potential of gene therapies that modify ECM remodeling for prophylaxis of restenosis.
引用
收藏
页码:2819 / 2825
页数:7
相关论文
共 50 条
  • [41] Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees
    Mi, Z
    Ghivizzani, SC
    Lechman, E
    Glorioso, JC
    Evans, CH
    Robbins, PD
    ARTHRITIS RESEARCH & THERAPY, 2003, 5 (03) : R132 - R139
  • [42] Upregulation of transforming growth factor-β after panretinal photocoagulation
    Ishida, K
    Yoshimura, N
    Yoshida, M
    Honda, Y
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 1998, 39 (05) : 801 - 807
  • [43] Adverse effects of adenovirus-mediated gene transfer of human transforming growth factor beta 1 into rabbit knees
    Zhibao Mi
    Steven C Ghivizzani
    Eric Lechman
    Joseph C Glorioso
    Christopher H Evans
    Paul D Robbins
    Arthritis Res Ther, 5
  • [44] Transforming growth factor-β1 gene transfer ameliorates acute long allograft rejection
    Mora, BN
    Boasquevisque, CHR
    Boglione, M
    Ritter, JM
    Scheule, RK
    Yew, NS
    Debruyne, L
    Qin, LH
    Bromberg, JS
    Patterson, GA
    JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2000, 119 (05): : 913 - 919
  • [45] Transforming growth factor-β2 and chondroitin sulfate proteoglycan in human CSF, but not transforming growth factor-β1, correlate with hydrocephalus in infants
    Chow, LC
    Zandian, M
    Matundan, H
    Krueger, RC
    PERINATOLOGY 2001, VOLS 1 AND 2, 2001, : 293 - 298
  • [46] Differential in vitro phenotype pattern, transforming growth factor-β1 activity and mRNA expression of transforming growth factor-β1 in Apert osteoblasts
    P. Locci
    Tiziano Baroni
    Furio Pezzetti
    Cinzia Lilli
    Lorella Marinucci
    Domenica Martinese
    Ennio Becchetti
    Mario Calvitti
    Francesco Carinci
    Cell and Tissue Research, 1999, 297 : 475 - 483
  • [47] Possible involvement of transforming growth factor-β1 and transforming growth factor-β receptor type II during luteinization in the marmoset ovary
    Wehrenberg, U
    Giebel, J
    Rune, GM
    TISSUE & CELL, 1998, 30 (03): : 360 - 367
  • [48] Expression of transforming growth factor-β type 1 receptor and transforming growth factor-β type 2 receptor in diabetic rat retina
    Cao, Dan
    Liu, Lin
    Shen, Wei
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2008, 1 (04) : 297 - 300
  • [49] Differential in vitro phenotype pattern, transforming growth factor-β1 activity and mRNA expression of transforming growth factor-β1 in Apert osteoblasts
    Locci, P
    Baroni, T
    Pezzetti, F
    Lilli, C
    Marinucci, L
    Martinese, D
    Becchetti, E
    Calvitti, M
    Carinci, F
    CELL AND TISSUE RESEARCH, 1999, 297 (03) : 475 - 483
  • [50] Transforming growth factor-ß1 inhibits cytokine-mediated induction of human metalloelastase in macrophages
    Feinberg, MW
    Jain, MK
    Werner, F
    Sibinga, NES
    Wiesel, P
    Wang, H
    Topper, JN
    Perrella, MA
    Lee, ME
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) : 25766 - 25773