Synthetic clock transitions via continuous dynamical decoupling

被引:26
|
作者
Trypogeorgos, D. [1 ,2 ]
Valdes-Curiel, A. [1 ,2 ]
Lundblad, N. [3 ]
Spielman, I. B. [1 ,2 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] NIST, College Pk, MD 20742 USA
[3] Bates Coll, Dept Phys & Astron, Lewiston, ME 04240 USA
基金
美国国家科学基金会;
关键词
QUANTUM-SYSTEMS; DECOHERENCE; MEMORY;
D O I
10.1103/PhysRevA.97.013407
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Decoherence of quantum systems due to uncontrolled fluctuations of the environment presents fundamental obstacles in quantum science. Clock transitions which are insensitive to such fluctuations are used to improve coherence, however, they are not present in all systems or for arbitrary system parameters. Here we create a trio of synthetic clock transitions using continuous dynamical decoupling in a spin-1 Bose-Einstein condensate in which we observe a reduction of sensitivity to magnetic-field noise of up to four orders of magnitude; this work complements the parallelwork byAnderson et al. [R. P. Anderson et al., following paper, Phys. Rev. A 97, 013408 (2018)]. In addition, using a concatenated scheme, we demonstrate suppression of sensitivity to fluctuations in our control fields. These field-insensitive states represent an ideal foundation for the next generation of cold-atom experiments focused on fragile many-body phases relevant to quantum magnetism, artificial gauge fields, and topological matter.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Robust trapped-ion quantum logic gates by continuous dynamical decoupling
    Bermudez, A.
    Schmidt, P. O.
    Plenio, M. B.
    Retzker, A.
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [42] Continuous dynamical decoupling and decoherence-free subspaces for qubits with tunable interaction
    Yalcinkaya, I.
    Cakmak, B.
    Karpat, G.
    Fanchini, F. F.
    QUANTUM INFORMATION PROCESSING, 2019, 18 (05)
  • [43] A continuous-time diffusion limit theorem for dynamical decoupling and intrinsic decoherence
    Hillier, Robin
    Arenz, Christian
    Burgarth, Daniel
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (15)
  • [44] Topological dynamical decoupling
    Jiang Zhang
    XiaoDong Yu
    GuiLu Long
    QiKun Xue
    Science China(Physics,Mechanics & Astronomy), 2019, (12) : 6 - 13
  • [45] High fidelity quantum memory via dynamical decoupling: theory and experiment
    Peng, Xinhua
    Suter, Dieter
    Lidar, Daniel A.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2011, 44 (15)
  • [46] High-fidelity adiabatic quantum computation via dynamical decoupling
    Quiroz, Gregory
    Lidar, Daniel A.
    PHYSICAL REVIEW A, 2012, 86 (04):
  • [47] Optimal digital dynamical decoupling for general decoherence via Walsh modulation
    Haoyu Qi
    Jonathan P. Dowling
    Lorenza Viola
    Quantum Information Processing, 2017, 16
  • [48] Topological dynamical decoupling
    Jiang Zhang
    Xiao-Dong Yu
    Gui-Lu Long
    Qi-Kun Xue
    Science China(Physics,Mechanics & Astronomy), 2019, 62 (12) : 6 - 13
  • [49] Robust dynamical decoupling
    Souza, Alexandre M.
    Alvarez, Gonzalo A.
    Suter, Dieter
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1976): : 4748 - 4769
  • [50] Mixed dynamical decoupling
    Genov, Genko T.
    Aharon, Nati
    Jelezko, Fedor
    Retzker, Alex
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03):